Chapter 5

State Variables and State Equations

his chapter is an introduction to state variables and state equations as they apply in circuit anal-
ysis. The state transition matrix is defined, and the state space-to-transfer function equivalence
is presented. Several examples are given to illustrate their application.

5.1 Expressing Differential Equations in State Equation Form

As we know, when we apply KCL or KVL in networks that contain energy-storing devices, we
obtain integro-differential equations. Also, when a network contains just one such device (capacitor
or inductor), it is said to be a first order circuit. If it contains two such devices, it is said to be second-
order circuit, and so on. Thus, a first order linear, time-invariant circuit can be described by a differ-
ential equation of the form

az%ﬂloy(t) = x(7) (5.1)

A second order circuit can be described by a second-order differential equation of the same form as
(5.1) where the highest order is a second derivative.

An nth-order differential equation can be resolved to n first-order simultaneous differential equa-
tions with a set of auxiliary variables called state variables. The resulting first-order differential equa-
tions are called state space equations, or simply state equations. These equations can be obtained
either from the nth-order differential equation, or directly from the network, provided that the state
variables are chosen appropriately. The state variable method offers the advantage that it can also be
used with non-linear and time-varying devices. However, our discussion will be limited to linear,
time-invariant circuits.

State equations can also be solved with numerical methods such as Taylor series and Runge-Kutta

methods, but these will not be discussed in this text . The state variable method is best illustrated
through several examples presented in this chapter.

Example 5.1

A series RLC circuit with excitation

vy(t) = e’ (5.2)

* These are discussed in “Numerical Analysis using MATLAB and Spreadsheets” ISBN 0-9709511-1-6.
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Chapter 5 State Variables and State Equations

is described by the integro-differential equation

. Cﬁ i . _ _Jjot
R1+Ldt+C _wldt =e (5.3)

Differentiating both sides and dividing by L we get

2 .

St Rdi 1. 1. jor

—dt2+Ldt+L_Cl = pjoe (5.4)
or

2 )

It Rdi 1. 1. o

dtz_ T TIolt e (5.5)

Next, we define two state variables x; and x, such that

and
di dx,; .
it 5.
X2 dr di X ( 7)
Then,

%, = di/df (5.8)
where X, denotes the derivative of the state variable x, .

From (5.5) through (5.8), we obtain the state equations

X-] :)CZ

(5.9)

. R 1 1. jot
X, = _—xZ_—xl+—](De

It is convenient and customary to express the state equations in matrix form. Thus, we write the
state equations of (5.9) as

. 0 1 0
H I M dly (5.10)
o |ze gl |piee

*  For a review of matrix theory, please refer to Appendix C.
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Expressing Differential Equations in State Equation Form

We usually write (5.10) in a compact form as

X = Ax + bu (5.11)
where
¥ 0 1 ¥ 0
=", 4 = 1 R x= N, b= l.ejw,,andu:anyinput (5.12)
X2 IC L X2 L’/

The output y(#) is expressed by the state equation
y = Cx+du (5.13)

where C is another matrix, and d is a column vector. Therefore, the state representation of a net-
work can be described by the pair of the of the state space equations

X = Ax+ bu

y=Cx+du (5.14)
The state space equations of (5.14) can be realized with the block diagram of Figure 5.1.
+ x x +
u b @ et c @ v
+ -
A
d
Figure 5.1. Block diagram for the realization of the state equations of (5.14)
We will learn how to solve the matrix equations of (5.14) in the subsequent sections.
Example 5.2
A fourth-order network is described by the differential equation
4 3 2
a0 @00 a0y = u (5.15)
dt dr dt dt

where y(f) is the output representing the voltage or current of the network, and u(#) is any input.
Express (5.15) as a set of state equations.
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Chapter 5 State Variables and State Equations

Solution:

The differential equation of (5.15) is of fourth-order; therefore, we must define four state variables
that will be used with the resulting four first-order state equations.

We denote the state variables as x,, x,, x;, and x,, and we relate them to the terms of the given dif-

ferential equation as

2 3
d d d
x; = (1) Xy = ;,Z X; = ““‘3‘/ Xy = ““% (5.16)
! dt dt
We observe that
X=X,
Xy = X3
x3 = Xy (517)
d*
—f = X, = —QyX;—a;X,— a,X;—az;x,+ u(t)
dt
and in matrix form
X 0 1 0 01X |o
Yol o |00 1 04 N0, (5.18)
X3 0 0 0 1 ||x; 0
Xy —ap —a; —a, —dz||x, 1
In compact form, (5.18) is written as
X = Ax + bu (5.19)
where
X 0 1 0 0 Xy 0
X= )'cz, a=[0 01 0, x=", b= 0, and u = u(z)
X5 0 0 0 1 X3 0
Xy —ay —a; —a, —a; Xy 1

We can also obtain the state equations directly from given circuits. We choose the state variables to
represent inductor currents and capacitor voltages. In other words, we assign state variables to
energy storing devices. The examples that follow illustrate the procedure.
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Expressing Differential Equations in State Equation Form

Example 5.3

Write state equation(s) for the circuit of Figure 5.2, given that v-(0 ) = 0.

CDRM ve(t) = v,, (1)

vguy(t) I

Figure 5.2. Circuit for Example 5.3

Solution:

This circuit contains only one energy-storing device, the capacitor. Therefore, we need only one
state variable. We choose the state variable to denote the voltage across the capacitor as shown in
Figure 5.3. The output is defined as the voltage across the capacitor.

R
() T
C—i__ <+ VC(t) = vout(t) =X

veu(t)

AV

Figure 5.3. Circuit for Example 5.3 with state variable x assigned to it

For this series circuit,

: . dve :
1R=z=zC=C7h—=Cx
and
vp(t) = Ri = RCx
By KVL,
Ve(1) +ve(t) = vguy(1)
or

RCx +x = vou,(t)

Therefore, the state equations are

. 1
X = —o=x+vqu,(!
RCEF Vst () (5.20)
y=x
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Chapter 5 State Variables and State Equations

Example 5.4

Wrrite state equation(s) for the circuit of Figure 5.4 assuming i;(0 ) = 0, and the output y is defined

asy = i(1).
R
— AN VWV
(1) i é :
Vi y(t)
Figure 5.4. Circuit for Example 5.4
Solution:

This circuit contains only one energy-storing device, the inductor; therefore, we need only one state
variable. We choose the state variable to denote the current through the inductor as shown in Figure
5.5.

R
——AMA—
@) i(f) = x gL

veu(t)

Figure 5.5. Circuit for Example 5.4 with state variable x assigned to it

By KVL,
VR+VL = VSLIO(Z‘)
or
. di
RZ+L6_]; = VSMO(Z‘)
or

Rx +Lx = VsuO(t)

Therefore, the state equations are

R 1
= -7x+ szuo(t)

y=x

=.
|

(5.21)
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5.2 Solution of Single State Equations

If a circuit contains only one energy-storing device, the state equations are written as

ox + Pu
5.22
v =kx+ku ( )

where a, B, k;, and k, are scalar constants, and the initial condition, if non-zero, is denoted as
We will now prove that the solution of the first state equation in (5.22) is

ot t
x(t) = e « to)x,,+eat'[ e “Bu(t)dr (5.24)

Iy
Proof:

First, we must show that (5.24) satisfies the initial condition of (5.23). This is done by substitution of
t = t, in (5.24). Then,

a(ty—1y)

Iy
Xy + eatj e “Bu(t)dr (5.25)

ty

x(t)) = e

The first term in the right side of (5.25) reduces to x, since

o(ty—ty)
e

The second term of (5.25) is zero since the upper and lower limits of integration are the same.
Therefore, (5.25) reduces to x(f)) = x, and thus the initial condition is satistied.

Next, we must prove that (5.24) satisfies also the first equation in (5.22). To prove this, we differen-
tiate (5.24) with respect to ¢ and we get

t
x(1) = c%(ea(t_tn)xo)+c%{ewj emﬁu(r)dr}

)

or
. a(t-1)) ar ' —at aty —ot
X(t) = ae X+ oe I e Pu(t)dr+e [e " Pu(v)]|__,
Ty
_ t
= a[ea(t to)x()+ eatj emﬁu(r)dt} + eme*atﬁu(l)
Iy
or
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Chapter 5 State Variables and State Equations

0L(t_t”)xo + Itea(t_T)Bu(t)dr} + Bu(r) (5.27)

)

x(t)= a[e

We observe that the bracketed terms of (5.27) are the same as the right side of the assumed solution
of (5.24). Therefore,

X = ax+ pu
and this is the same as the first equation of (5.22).

In summary, if o and B are scalar constants, the solution of

X = ax+Bu (5.28)
with initial condition
x,) = x(ty) (5.29)
is obtained from the relation
oll— o ! —aT
x(t) = e . to)x0+e IJ. e  Pu(t)dt (5.30)

1y
Example 5.5
Use (5.28) through (5.30) to find the capacitor voltage v.(¢) of the circuit of Figure 5.6 for >0,
given that the initial conditionis vo(0 ) = I V

— A
R=2Q

C;) ;{ vel(t)

C=0.5F
2u(1)

Figure 5.6. Circuit for Example 5.5

Solution:

From (5.20) of Example 5.3,

1
X = —gx + vguy(t)
and by comparison with (5.28),
= —L = _] = —[
RC 2x0.5
and
p=2
5-8 Signals and Systems with MATLAB Applications, Second Edition
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The State Transition Matrix

Then, from (5.30),

_ t t
x(1) = ea(t t())x0+ew'[ eiaTBu(r)dr = eil(t*o)l +eitJ- er2u(1)dt
7 0

t t

e+ 2e7tJ‘ fdr=c '+ Zeft[et] |0 =e¢ '+ Zeft(et— 1)
0

or

ve(t) = x(1) = (2— e uy(r) (5.31)

If we assume that the output y is the capacitor voltage, the output state equation is
(1) = x(1) = (2= ug(0) (5.32)

5.3 The State Transition Matrix
In Section 5.1 we defined the state equations pair

X = Ax+ bu (5.33)
y = Cx+du '

where for two or more simultaneous differential equations, 4 and C are 2 x 2 or higher order

matrices, and b and d are column vectors with two or more rows. In this section we will introduce

.. . At . . . . . .
the state transition matrix e” , and we will prove that the solution of the matrix differential equation

X = Ax+ bu (5.34)
with initial conditions
x(ty) = x, (5.35)
is obtained from the relation
_ t
x(1) = eA(t t())xo + eAt'[ e_ATbu(r)dr (5.36)
)

Proof:

Let 4 be any n x n matrix whose elements are constants. Then, another # x n matrix denoted as

¢(?), is said to be the state transition matrix of (5.34), if it is related to the matrix 4 as the matrix
power series

_ At l 22 1 33 1 nn
o(t)=e _I+At+ZAt +§At +...+EA1 (5.37)
Signals and Systems with MATLAB Applications, Second Edition 5-9
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Chapter 5 State Variables and State Equations

where [ is the n x n identity matrix.

From (5.37), we find that
0(0) = = 11404 .. =1 (5.38)

Differentiation of (5.37) with respect to ¢ yields

0'(f) = ie‘“ 0+ A T+ A0+ .. = A+ A0+ (5.39)

and by comparison with (5.37) we get

d A At
6718 = Ae (540)

To prove that (5.30) is the solution of (5.34), we must prove that it satisfies both the initial condition
and the matrix differential equation. The initial condition is satisfied from the relation

At - Aty (10 41
x(t)) = e i tO)x0+e tgj. 4 bu(t)dt = eA0x0+0 = Ix, = x, (5.41)

ty

where we have used (5.38) for the initial condition. The integral is zero since the upper and lower
limits of integration are the same.

To prove that (5.34) is also satisfied, we differentiate the assumed solution
A(t- r_
Xty = ¢y, [ e bu(rydr
Zy

with respect to ¢ and we use (5.40), that is,

d At At
“ =4
dte e
Then,
. A(t—1y) Ar 0" —ax At —At
(1) = de X+ Ae Ie bu(t)dr + e bu(r)
)
or

x(t) = A[eA(tto)x(, + eAt_[ bu(r)dr} +etle™ "bu(r) (5.42)
Iy
We recognize the bracketed terms in (5.42) as x(¢), and the last term as bu(¢). Thus, the expression

(5.42) reduces to
x(t) = Ax + bu

5-10 Signals and Systems with MATLAB Applications, Second Edition
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Computation of the State Transition Matrix

In summary, if 4 is an » x n matrix whose elements are constants, n > 2, and b is a column vector
with n elements, the solution of

x(t) = Ax+ bu (5.43)
with initial condition
is
- t
x(t) = Y to)x0+eAtI e bu(t)dh (5.45)
Iy

Therefore, the solution of second or higher order circuits using the state variable method, entails the

. i, A1 . .
computation of the state transition matrix e” , and integration of (5.45).

. - . At
5.4 Computation of the State Transition Matrix e

Let 4 be an n x n matrix, and / be the n x n identity matrix. By definition, the eigenvalues ;,

i =1,2,...,n of 4 are the roots of the nth order polynomial

det[A—WI] = 0 (5.46)

We recall that expansion of a determinant produces a polynomial. The roots of the polynomial of
(5.406) can be real (unequal or equal), or complex numbers.

. . . At . .
Evaluation of the state transition matrix ¢ is based on the Cayley-Hamilton theorem. This theorem

states that a matrix can be expressed as an (n — )th degree polynomial in terms of the matrix 4 as

M= aol+a]A+a2A2+...+an_1An_1 (5.47)

where the coefficients a; are functions of the eigenvalues A .

We accept (5.47) without proving it. The proof can be found in Linear Algebra and Matrix Theory
textbooks.

Since the coefficients a; are functions of the eigenvalues A, we must consider the following cases:
Case I: Distinct Eigenvalues (Real or Complex)

If A, #Ah,#N;# ... # L, that s, if all eigenvalues of a given matrix 4 are distinct, the coefficients a;

are found from the simultaneous solution of the following system of equations:

Signals and Systems with MATLAB Applications, Second Edition 5-11
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2 n-1 Mt

ao+al)\.1+a2)\41+...+an717\-] = e
2 n-1 Ayt

a0+a17\42+a27\42+...+an_1}\.2 = e (548)
2 -1 At

a0+a17\4n+a2?\,n+...+an_17\42 = en

Example 5.6

. A -
Compute the state transition matrix e~ given that 4 = { 2
0 —

Solution:
We must first find the eigenvalues A of the given matrix 4. These are found from the expansion of

det[A-\] = 0
For this example,

det[A —\I] :ckt{ﬁg {]—x{f 0}}::da{_2_x 1} =0
0 - 0 1 0 —1-2

(2= (=1-2)=0

or
A+ DH(A+2) =0
Therefore,

A, =-1 and hy=-2 (5.49)

Next, we must find the coefficients a; of (5.47). Since 4 is a 2 x 2 matrix, we only need to consider

the first two terms of that relation, that is,
At

The coefficients a, and a; are found from (5.48). For this example,

At
a() + a17\¢1 = e
Ayt
or
a,+a,(-1) = ¢
o , (5.51)
ay+a,(-2) = e’
5-12 Signals and Systems with MATLAB Applications, Second Edition
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Simultaneous solution of (5.51) yields

and by substitution into (5.50),

or

-t =2t
a,=2e —-e
o (5.52)
a =e —e
eAt _ (2€—t_e—2t) 1 0 +(e_t—e_2t) -2 1
0 1 0 -1
-2t -t =2t
e - (5.53)

. A1 , . . .
In summary, we compute the state transition matrix e” for a given matrix 4 using the following

procedure:

1. We find the eigenvalues A from det[4 —AI] = 0. We can write [4—Al] atonce by subtracting

A from each of the main diagonal elements of 4. If the dimension of 4 is a 2 x 2 matrix, it will

yield two eigenvalues; if it is a 3 x 3 matrix, it will yield three eigenvalues, and so on. If the eigen-

values are distinct, we perform steps 2 through 4; otherwise we refer to Case II below.

2. If the dimension of 4 isa 2 x 2 matrix, we use only the first 2 terms of the right side of the state

transition matrix

At

e = a0[+a1A+a2A2+...+an_,An_1 (5.54)

If 4 matrix is a 3 x 3 matrix, we use the first 3 terms, and so on.

3. We obtain the a; coefficients from

2 n—1 At
a0+a1}\41+a2}\41+...+an_17\,1 = e

2 n-1 At
ag+ah,+a\;+...+a, ;h, =e

2 n—1 At
a()+a17\/n+a27\/n+...+an_17\4n = e !

We use as many equations as the number of the eigenvalues, and we solve for the coefficients a;.

4. We substitute the a; coefficients into the state transition matrix of (5.54), and we simplify.
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Orchard Publications



Chapter 5 State Variables and State Equations

Example 5.7

. L Ar
Compute the state transition matrix e* given that

5 7 -5
2 & 3

Solution:

1. We first compute the eigenvalues from det[4 —AI] = 0. We obtain [4 — L] at once, by subtract-

ing A from each of the main diagonal elements of 4. Then,

5—-A 7 -5
det[A—-\I] = det| ¢ 4-% -1 | =0 (5.56)

2 § —-3-A

and expansion of this determinant yields the polynomial

A6\ + 16 =0 (5.57)
We will use MATLAB roots(p) function to obtain the roots of (5.57).

p=[1 -6 11 —6]; r=roots(p); fprintf(' \n'); fprintf(lambdal = %5.2f \t, r(1));...
fprintf(lambda2 = %5.2f \t', r(2)); fprintf(lambda3 = %5.2f, r(3))

lambdal = 3.00 lambda2 = 2.00 lambda3 = 1.00
and thus the eigenvalues are
2. Since 4 is a 3 x 3 matrix, we need to use the first 3 terms of (5.54), that is,

M= apgl +a,A + a2A2 (5.59)

3. We obtain the coefficients a,, a;, and a, from

2 At
a0+a17\.] +a27\41 = e
Ayt
a()+a17\«2+a27\«§ = e ?
st
or
5-14 Signals and Systems with MATLAB Applications, Second Edition
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Computation of the State Transition Matrix

t
e

apg+a,;+a,

2t

3t
as+3a,+9a, = e

(5.60)

We will use the following MATLAB code for the solution of (5.60).

B=sym([1 1 1;1 2 4;1 3 9]'); b=sym('[exp(t); exp(2*t); exp(3*1)]); a=B\b; fprintf(' \n');...
disp('a0 = "); disp(a(1)); disp(al ='); disp(a(2)); disp(a2 ="); disp(a(3))

a0 =

3*exp(t)-3*exp(2*t)+exp(3*t)

al =

-5/2*exp (t)+4*exp (2*t) -3 /2*exp (3*t)
a2 =
1/2%*exp(t)-exp(2*t)+1/2%exp(3*t)

Thus,

t 2t 3t
a, =3e -3¢ +e

5t 2t 3 3t
a, = -3e +4e -3¢

1+ 2t 1 3¢
a2=§e—e +§e

(5.61)

4. We also use MATLAB to perform the substitution into the state transition matrix, and to pet-

form the matrix multiplications. The code is shown below.

syms t; a0 = 3*exp(t) +exp(3*t)-3*exp(2*1); a1l = -5/2*exp(t)-3/2*exp(3*t) +4*exp(2*t);...

a2 = 1/2*exp(t)+1/2*exp(3*t)-exp(2*1);...

A=[57 -5; 04 -1; 2 8 -3]; eAt=a0*eye(3)+al*A+a2*A" 2

eAt =

[ -2%exp(t)+2*exp(2*t)+exp(3*t), -6*exp (t)+5*exp(2*t) +exp (3*t), d*exp(t)-3*exp (2*t) -exp (3*t) ]
[ —exp(t)+2*exp(2*t)-exp(3*t), -3*exp(t)+5*exp(2*t)-exp(3*t), 2*exp(t)-3*exp (2*t)+exp (3*t)]
[ -3*exp(t)+4*exp(2*t)-exp(3*t), -9*exp(t)+10*exp(2*t)-exp(3*t), 6*exp (t)-6*exp (2*t)+exp (3*t)]
Thus,
t 2t 3t t 2t 3t t 2t 3t
—2e +2¢ +e —b6e +5¢ +e 4de — 3¢ —e
At
= t 2t 3t t 2t 3t t 2t 3t
¢ —e+2e¢ —e —-3e +5e -e 2e —3e" +e

t 2t 3t t 2t 3t
—3e +4e” —e —9e + 10 —e¢

Case II: Multiple Eigenvalues
In this case, we will assume that the polynomial of

det[A—\I] = 0

t 2t 3t
6e —6e +e

(5.62)
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Chapter 5 State Variables and State Equations

has n roots, and m of these roots are equal. In other words, the roots are

;\a]:lzz 7\«3... = )\‘m, 7\«m+1, 7\«}1 (5.63)
The coefficients a; of the state transition matrix
At 2 n-1
e = a0[+a1A+a2A +...+an_1A (5.64)

are found from the simultaneous solution of the system of equations of (5.65) below.

2 n-1 At
a0+a1}\41+a2}\41+...+an_1}\41 = e
d 2 n-1 d Mt
—(a()+a1)\‘]+a27\‘]+...+an7]>\41 ) = —e
., @,
2 2
d 2 -1 d” At
“"‘-2(610+Cl]7\,1+a27\,1+...+an_17\,r; ) = ——'—26 !
.’ a’
(5.65)
m—1 m—1
2 n-1 d At
—“‘“’;‘:—I(ao+a]7\.1+az7\-1+...+an_1)\41 ) = m_Ie
a! a!
A t
2 n-1 m+1
a()+a17\,m+]+a27\,m+1+...+an717um+1=€
At
2 -1
a,+a,h,+a\,+...+a, A =e"

Example 5.8

. o Ar
Compute the state transition matrix e* given that

-

1. We first find the eigenvalues A of the matrix 4 and these are found from the polynomial of
det[A—\I] = 0. For this example,

Solution:

det[A-\] = det|=1=% 0| -9
2 —1-
=(-1-M)(=1-1)=0
=L+’ =0
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Computation of the State Transition Matrix

and thus,
}\41 = }\42 = _]

2. Since 4 is a 2 x 2 matrix, we only need the first two terms of the state transition matrix, that is,

¢! = ajl+a,d (5.66)

3. We find a, and a; from (5.65). For this example,

At
ag+a,h; = e
d d Mt
—(ag+a;h;) = ——e
d)\'j( 0 1 ]) dk]
or
Ayt
At
a, = te
and by substitution with A; = A, = -1 , we get
—t
ao_a] = e
-

Simultaneous solution of the last two equations yields

-t —t
a, =e +te

(5.67)
Cll = t67
4. By substitution of (5.67) into (5.66), we get
' = (e_t+te_t) 10 +te” -1 0
0 1 2 -
or
—t ]
A= e 0 (5.68)
2t ¢

We can use the MATLAB eig(x) function to find the eigenvalues of an n x n matrix. To find out
how it is used, we invoke the help eig command.
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We will first use MATLAB to verify the values of the eigenvalues found in Examples 5.6 through 5.8,
and we will briefly discuss eigenvectors on the next section.

For Example 5.6
A= [-2 1;0 —1]; lambda=eig(A)

lambda =
-2
-1

For Example 5.7

B=[57 -5, 0 4 -1; 2 8 —3]; lambda=eig(B)

lambda =
1.0000
3.0000
2.0000

For Example 5.8
C =[-1 0;2 —1]; lambda=eig(C)
lambda =
-1
-1
5.5 Eigenvectors

Consider the relation

AX = M X

(5.69)

where 4 is an n x n matrix, X is a column vector, and A is a scalar number. We can express this rela-

tion in matrix form as

We write (5.70) as

Then, (5.71) can be written as

n| | X1 X7
ann x}’l xi’l
(A-ADX = 0 (5.71)

5-18
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Eigenvectors

(a;;-M)x; apx, ... a;x,
ay,x; (a,—A)x, ... a,x, — 0 (5.72)
a,;x; a,x, ...(a,,—M\)x,

The equations of (5.72) will have non-trivial solutions if and only if its determinant is zero , that is, if

(a;;=2) a;, ... a,
det| G (anh) @y | (5.73)
a,; a, ...(a,,—}\)

Expansion of the determinant of (5.73) results in a polynomial equation of degree n in A, and it is
called the characteristic equation.

We can express (5.73) in a compact form as
det(A-\1) = 0 (5.74)

As we know, the roots A of the characteristic equation are the eigenvalues of the matrix 4, and cor-
responding to each eigenvalue A, there is a non-trivial solution of the column vector X, i.e., X# 0.
This vector X is called eigenvector. Obviously, there is a different eigenvector for each eigenvalue.
Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to unit length.

This is done by dividing each component of the eigenvector by the square root of the sum of the
squares of their components, so that the sum of the squares of their components is equal to unity.

o o o T T .
In many engineering applications the unit eigenvectors are chosen such that X - X° = [ where X is

the transpose of the eigenvector X, and 7 is the identity matrix.

Two vectors X and Y are said to be orthogonal if their inner (dot) product is zero. A set of eigenvec-
tors constitutes an orthonormal basis if the set is normalized (expressed as unit eigenvectors) and
these vector are mutually orthogonal. An orthonormal basis can be formed with the Gram-Schmidt
Orthogonalization Procedure; it is beyond the scope of this chapter to discuss this procedure, and
therefore it will not be discussed in this text. It can be found in Linear Algebra and Matrix Theory
textbooks.

The example which follows, illustrates the relationships between a matrix A4, its eigenvalues, and
eigenvectors.

*  This is because we want the vector X in (5.71) to be a non-zero vector and the product (A-\1)X to be zero.
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Example 5.9

Given the matrix

5 7 -5
A4=10 4 -1
2 8 -3

a. Find the eigenvalues of 4

b. Find eigenvectors corresponding to each eigenvalue of 4

c. Form a set of unit eigenvectors using the eigenvectors of part (b).

Solution:

a. This is the same matrix as in Example 5.7, where we found the eigenvalues to be

}\.]:1 7\42:2 }\43:3

b. We start with

AX = 0\ X
and we let
Xy
X = x2
X3
Then,
5 7 =5M Xy
0 4 -Il|x,] = A|x, (5.75)
2 8 =3|x X5
or
Sx;  7x, —Sx; AX,
2x;  8x, -3x; AX;
Equating corresponding rows and rearranging, we get
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(5-L)x, 7x, =5x; 0
0  (4-Mx,  —x =10 (5.77)
2x, 8x, (3 -N)x; 0
For A = 1, (5.77) reduces to
By Crame’s rule, or MATLAB, we get the indeterminate values
(5.79)

x, = 0/0 X, = 0/0 X; = 0/0

Since the unknowns x,, x,, and x; are scalars, we can assume that one of these, say x,, is known,

and solve x; and x; in terms of x,. Then, we get x; = 2x,,and x; = 3x,.

Therefore, an eigenvector for A = [ is

X, 2x, 2
Xy o= Xl T | x| T X201 T |1 (5.80)
X; 3x, 3 3
since any eigenvector is a scalar multiple of the last vector in (5.80).
Similarly, for A = 2, we get x; = x,, and x; = 2x,. Then, an eigenvector for A = 2 is
X1 X2 1
Xozo= |x)| = | x| = %201 = |1 (5.81)
X3 2x, 2
Finally, for A = 3, we get x; = —x,, and x; = x,. Then, an eigenvector for A = 3 is
Xy —X2 -1 -1
Xy -3= Xl T\ x| =X I T | 1 (5.82)
X3 X, 1 1

We find the unit eigenvectors by dividing the components of each vector by the square root of

the sum of the squares of the components. These are:

Signals and Systems with MATLAB Applications, Second Edition 5-21

Orchard Publications



Chapter 5 State Variables and State Equations

2P+ P +3 = 14
P+ 1P +2° = 6
Y + P+ 17 = 3

The unit eigenvectors are

2 L =1
J14 J6 3
Unit X, _ = —J%; Unit X, _ ,= %6 Unit X, _ ;= ﬁ (5.83)
3 2 L
14] V6l J3|

We observe that for the first unit eigenvector the sum of the squares is unity, that is,
2 )2 ( 1 )2 ( 3 )2 4 1,9
(-—— t|l—=] +|—=] = —=+=+—==1 (5.84)
J14 J14 J14 14 14 14
and the same is true for the other two unit eigenvectors in (5.83).

5.6 Circuit Analysis with State Variables

In this section, we will present two examples to illustrate how the state variable method is used in cir-

cuit analysis.
Example 5.10
For the circuit of Figure 5.7, the initial conditions are i;(0 ) = 0, and v.(0 ) = 0.5 V. Use the state

variable method to compute i,(#) and v(¢).

Solution:

For this example,
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and

d.

Substitution of given values and rearranging, yields

1di;, )
idr - (-D)i,—ve+1
or
L= iy dver (5.85)
Next, we define the state variables x; = i; and x, = v.. Then,
. di,
= —= 5.86
X di ( )
and
dve
2T dt
Also,
dve
i = CE
and thus,
dv 4.
xI:zL:C—d?C:C)Q:}xZ
or
3
XZ = le (5.87)
Therefore, from (5.85), (5.80), and (5.87), we get the state equations
. 3
and in matrix form,
IR S R E AP0 (5.88)
X, 3/4  0]|x, 0
We will compute the solution of (5.88) using
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B ‘
Al to}x0+eAtJ‘ e_ATbu(r)dr (5.89)

1y

A = {—4 —} X, = ["L(O)} - [0} b= H (5.90)
3/4 0 (o) |1/2 0

. " At .
First, we compute the state transition matrix e . We find the eigenvalues from

x(t) = e

where

det[A=\I] = 0
Then,
det[A—2I] = det|~ %= 4 =
3/4 -
=(-MN=4-M)+3=0
=+ dh+3=0
Therefore,

The next step is to find the coefficients a;. Since 4 is a 2 x 2 matrix, we only need the first two

terms of the state transition matrix, that is,

! = ayl+aA (5.91)

The constants a, and a, are found from
a, + a17\42 = e

and with A, = —=/ and A, =-3, we get

ap—a; = e

(5.92)
-3t
00—3611 = e
Simultaneous solution of (5.92) yields
ay = 1.5¢"~0.5¢"
, (5.93)
a, = 0.5¢" - 0.5¢""
We now substitute these values into (5.91), and we get
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Q
Il

AT (15¢7 - 0.5¢7 [’ 0} +(0.5¢7" - 0.5e‘2’)[‘4 ‘}
0 0

1 3/4
» Y 2¢7 42677 24 27
_ 1.5¢ —0.5¢e 0 . + P
—t -3t =, _ 2
0 1.5¢" —0.5e 3¢ 3¢ 0
or
|05 v 15T 2e g 207
e = 3 _3¢ 3 3
ge t—ge I.5et—0.5e 3t

The initial conditions vector is the second vector in (5.90); then, the first term of (5.89) becomes

e Xy = ~3t
’—ge_t—ée 1.5¢ " —0.5¢7" /

. 05"+ 15e7" 2e+2¢7 |,
det-3 1/2

or

s B e—t + e—3t
%, = (5.94)
0.75¢"— 0.25¢7"

We also need to evaluate the integral on the right side of (5.89). From (5.90)

==L

and denoting this integral as Int, we have

-3(t-1)

050707 4 [ 573070 5 m1m0) o S3(-T)
0

(- =3(t-1)
Ty ée ( T)—ie

]} 4dr
8 8

1.5¢ "9 _0.5¢

or
t=0.5¢ " 4 15700
Int = J, 3 -0 _3 7300 4dv (5.95)
0 3 3
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The integration in (5.95) is with respect to T; then, integrating the column vector under the integral,

we get

t
Int = 4 —0.5¢"" V40507077
0.375¢ "V _0.125¢7 0 )

T=

or

i = 4{ —05+05 } 4| —osevosaT | 0.5¢"-0.5¢7"
0.375-0.125]  |p375¢” —0.125¢7")  0.25-0.375¢" + 0.125¢7"

By substitution of these values, the solution of

A(t—1 ro_
x(t) = e ( 0)x0+eAtI e ATbu(T)d’E
Zy
is

{x 1] _ —e_t+e_3t 4 0.5e_t—0.5e_3t _ e_t—e_jt
X, 0.75¢" — 0.25¢7" 0.25-0.375¢" +0.125¢" 1-0.75¢ " +0.25¢7"
Then,
. -t =3t
X, =i, =e —e (5.96)
and
X, = ve=1-075¢"+025¢"" (5.97)

Other variables of the circuit can now be computed from (5.96) and (5.97). For example, the voltage
across the inductor is

dip 1d, &+ -3 1 —+ 3 -3¢
v, =L— ==-=(e e ) =—--e +=-e

dt ~ 4dt 4 4

Example 5.11

A circuit is described by the state equation

X = Ax + bu (5.98)
where
a=110  x, = 1 p=|" and u = 802 (5.99)
1 -1 0 1
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Compute the state vector
X
x ="
)

det[A-\I] = 0

Solution:

We compute the eigenvalues from

For this example,

det[A -]

dar-x 0

Then,

;o
(I-M)(=1-2)=0

Since 4 is a 2 x 2 matrix, we only need the first two terms of the state transition matrix to find the

coefficients a;, that is,

At

The constants a, and a, are found from
+a,h Mt
ag+a,h; = e
o - (5.101)
a, + a17\-2 = e ?
and with A, = / and A, =-1, we get
a,+a, =€
o (5.102)
a~a, = e
and simultaneous solution of (5.102) yields
l‘+ —t
a, = €FC - cosht
2
t —t
a, = =% = sinht
2
By substitution of these values into (5.100), we get
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A" = coshtl + sinhtd = cosht|! 0| + sinhe|! 0| = |cosht+ sinht 0 (5.103)
0 1 1 - sinht cosht — sinht

The values of the vector x are found from

_ t t
x(1) = eA(t to)x0+eAt_[ eiATbu(t)dt = eAtx0+eAtj eiATbS(T)dt (5.104)

) 0

Using the sifting property of the delta function we find that (5.104) reduces to

eAtx0+eAtb = eAt(x0+b) = eAt{ 1 + -1 } = eAt 0
0 |1 1

cosht + sinht 0 0 _ [*1
sinht cosht — sinht | |1 X,

v 1| 2 0 - | (5.105)
X, cosht — sinht e’

5.7 Relationship between State Equations and Laplace Transform

x(1)

Therefore,

In this section, we will show that the state transition matrix can be computed from the Inverse
Laplace transform. We will also show that the transfer function can be found from the coefficient
matrices of the state equations.

Consider the state equation
X = Ax+bu (5.106)
Taking the Laplace of both sides of (5.106), we get

sX(s)—x(0) = AX(s)+ bU(s)
or

(sI-A4)X(s) = x(0)+bU(s) (5.107)
Multiplying both sides of (5.107) by (s/— A7, we get

X(s) = (sI—A)'x(0) + (sI-4) "' bU(s) (5.108)

Comparing (5.108) with
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t
x(t) = eAtx0+ eA[j e_ATbu(T)dﬂ: (5.109)
0

we observe that the right side of (5.108) is the Laplace transform of (5.109). Therefore, we can com-

. . At -1 :
pute the state transition matrix e* from the Inverse Laplace of (s/—4) ", that is, we can use the
relation

M= (sT-A)"y (5.110)

Next, we consider the output state equation
y = Cx+du (5.111)
Taking the Laplace of both sides of (5.111), we get
Y(s) = CX(s) + dU(s) (5.112)
and using (5.108), we get
Y(s) = C(sI—A)"'x(0)+[C(sI-A4)"b+d|U(s) (5.113)
If the initial condition x(0) = 0, (5.113) reduces to
Y(s) = [C(sI—A)"b+d]U(s) (5.114)

In (5.114), U(s) is the Laplace transform of the input u(?); then, division of both sides by U(s)
yields the transfer function

Gis) = YO — c(sT-ay b +d (5.115)

(s)

Example 5.12

o . L . iy At
In the circuit of Figure 5.8, all initial conditions are zero. Compute the state transition matrix e
using the Inverse Laplace transform method.

Vs(t) = u()(t)

Figure 5.8. Circuit for Example 5.12
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Solution:

For this circuit,

i=i
and
Substitution of given values and rearranging,
di .
Now, we define the state variables
X, =i
and
Then,
. di .
X; = 7; = —3ZL—VC+] (5117)
and
_ de
2T dt
Also,
. dve dve
i = Cdt =05 7 (5.118)
and thus,
d
x] = iL = 05% = 05.X2
or
XZ = 2x1 (5.119)

Therefore, from (5.117) and (5.119) we get the state equations

(5.120)
x2 = 2)(1
and in matrix form,
S e e R Y (5.121)
X, 2 0]|x, 0
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By inspection,
A= {—3 —1} (5.122)

Now, we will find the state transition matrix from

M= s ™ (5.123)
where
(sI—4) = [s 0}_[—3 —1} ) [S+3 1}
0 s 2 0 =2 s
Then,
N —1
(sT—A)" = adj(sI-A4) _ 1 s =1 | _|(s+D(s+2) (s+1)(s+2)
det(sI-A4) ¢ 13542|2 s+3 2 s+3

(s+1)(s+2) (s+1)(s+2)

We find the Inverse Laplace of each term by partial fraction expansion. Then,

t 2t

-t -2 -t -
eAt — %_1{(.?[—14)_1} — —e +2e —-e +e

—t -2t —t -2t
2e —2e 2e —e

Now, we can find the state variables representing the inductor current and the capacitor voltage
from

t
x(1) = eA’x0+eA’j e bu(t)dr
0

using the procedure of Example 5.11.

MATLAB provides two very useful functions to convert state space (state equations), to transfer
function (s-domain), and vice versa. The function $82tf (state space to transfer function) converts
the state space equations

X = Ax+ Bu x

(5.124)

y = Cx+Du
to the rational transfer function form
N(s)
G(s) = == 5.125
(x) = 3 (5.125)
*  We have used capital letters for vectors b and c to be consistent with MATLAB s designations.
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This is used with the statement [num,den]=ss2tf(A,B,C,D,iu) where A, B, C, D are the matrices of
(5.124) and iu is I if there is only one input. The MATLAB help command provides the following
information:

help ss2tf
SS2TF State-space to transfer function conversion.

[NUM, DEN] = SS2TF(A,B,C,D,1u) calculates the
transfer function:

of the system:

X = Ax + Bu
v = Cx + Du

from the iu'th input. Vector DEN contains the coefficients of
the denominator in descending powers of s. The numerator coeffi-
cients are returned in matrix NUM with as many rows as there
are outputs y.

See also TF2SS

The other function, tf2ss, converts the transfer function of (5.125) to the state-space equations of
(5.124). It is used with the statement [A,B,C,D]=tf2ss(num,den) where A, B, C, and D are the
matrices of (5.124), and num, den are N(s) and D(s) of (5.125) respectively. The MATLAB help
command provides the following information:

help tf2ss

TF2SS Transfer function to state-space conversion.
[A,B,C,D] = TF2SS(NUM,DEN) calculates the state-space
representation:

X = AX + Bu
vy = Cx + Du

of the system:

DEN (s)
from a single input. Vector DEN must contain the coefficients of
the denominator in descending powers of s. Matrix NUM must con-
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tain the numerator coefficients with as many rows as there are
outputs y. The A,B,C,D matrices are returned in controller canon-
ical form. This calculation also works for discrete systems. To
avoid confusion when using this function with discrete systems,
always use a numerator polynomial that has been padded with zeros
to make it the same length as the denominator. See the User's
guide for more details.

See also SS2TF.
Example 5.13

For the circuit of Figure 5.9,

+

= V() = v, (D)

J

Figure 5.9. Circuit for Example 5.13

V(1) = uy(1)

a. Derive the state equations and express them in matrix form as

x = Ax+ Bu

y = Cx+Du

b. Derive the transfer function
G(s) = M)
D(s)

c. Verify your answers with MATLAB.
Solution:

a. The differential equation describing the circuit is

dt
and with the given values,
z+%§+vc = uy(?)
or
di
07; = —i—ve+uyt)
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We let
X; =10, =1
and
X2 = Ve = Vour
Then,
. di
x1 = -
dt
and
dv,
X, = — = X
dt
Thus, the state equations are
X; = —x; =X+ uy(t)
)'Cz = xl
Yy =X

and in matrix form,

x=Ax+ Bu < Y
X,

£ Y

(5.126)
X
y=Cx+Du<>y= [0 1]{ 1} + [0]u0(t)
X2
b. The s —domain circuit is
L
+
10 S
RS VC(S) = Vgut(S)
V..(s) 1/s i
Figure 5.10. Transformed circuit for Example 5.13
By the voltage division expression,
1/s
Vout(s) - l+s+1/s Vin(s)
or
5-34 Signals and Systems with MATLAB Applications, Second Edition

Orchard Publications



Relationship between State Equations and Laplace Transform

Vout(S) - ]
Vin(s) s +s+1

Therefore,

_Vous) 1
) = Vin(s) - S +s+1 (127

A=[-1-1;10];B=[1 0]; C=][0 1]; D = [0];% The matrices of (5.126)

[num, den] = ss2tf(A, B, C, D, 1) % Verify coefficients of G(s) in (5.127)
num =

0 0 1
den =

1.0000 1.0000 1.0000
num= 1[0 0 1];den=[1 1 1]; % The coefficients of G(s) in (5.127)

[A B C D] = tf2ss(num, den) % Verify the matrices of (5.126)
A =
-1 -1
1 0
B =
1
0
C =
0 1
D =
0
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5.8 Summary

An nth-order differential equation can be resolved to n first-order simultaneous differential equa-
tions with a set of auxiliary variables called state variables. The resulting first-order differential
equations are called state space equations, or simply state equations.

The state space equations can be obtained either from the nth-order differential equation, or
directly from the network, provided that the state variables are chosen appropriately.

When we obtain the state equations directly from given circuits, we choose the state variables to
represent inductor currents and capacitor voltages.

The state variable method offers the advantage that it can also be used with non-linear and time-
varying devices.
If a circuit contains only one energy-storing device, the state equations are written as

ox + Pu

v =kx+ku

where a, B, k;, and k, are scalar constants, and the initial condition, if non-zero, is denoted as
x() = x(t()) (5.128)
If o and B are scalar constants, the solution of * = ax + Bu with initial condition x, = x(¢,) is
obtained from the relation
a(t—1p) ot ! —at
x(t) = e x)te J- e  PBu(t)dr
)

The solution of the state equations pair

Ax + bu
Cx+du

X

y

where 4 and C are 2 x 2 or higher order matrices, and b and d are column vectors with two or

. . . . At . .
more rows, entails the computation of the state transition matrix e, and integration of

A(t- ro_
x(t) = e « to)x0+eAt_[ e ATbu(r)dr
Iy
The eigenvalues A;, where i = 1,2,...,n, of an nxn matrix 4 are the roots of the nth order
polynomial
det[A-\] = 0

where / is the n x n identity matrix.
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e We can use the MATLAB eig(x) function to find the eigenvalues of an n x n matrix.

e The Cayley-Hamilton theorem states that a matrix can be expressed as an (n — 1)th degree poly-

nomial in terms of the matrix A4 as

At 2 -1
e = a01+a1A+02A +...+an_1An
where the coefficients a; are functions of the eigenvalues A .

e If all eigenvalues of a given matrix 4 are distinct, thatis, if A, # A, # A; # ... # &, , the coefficients

a; are found from the simultaneous solution of the system of equations

2 n—1 At
a0+a1}\41+a2}\41+...+an_17\,1 = e
2 -1 Ayt
a0+a17\«2+a27\«2+...+an_1>\4}; = e :
2 -1 Ayt
a()+a17\/n+a27\/n+...+an_17\42 = e !
e If some or all eigenvalues of matrix 4 are repeated, thatis, if A, =A,= ;... = A, A, ./, A,

the coefficients a; of the state transition matrix are found from the simultaneous solution of the

system of equations

2 n-1 At
a0+a])\4]+a2)\4]+ ...+an_17\41 = e
d 2 n-1 d Mt
—(ag+a,hj+a,\;+...+a, ;A = ——e
dk]( 0 1771 27¢] n—1"1 ) d7\41
2 2
d 2 n-1 d” Mt
_2(a0+a1}\/1+a27\/1+...+an_[}\41 ) = cwe
1 1
.y m—1
d" 2 n—1 d At
mil(a0+a1}\/1+a27\/1+...+an_1}\41 ) = P
i dh,
)"m+1t

2 n—1
g+ Ay g+ ahy g+t Ay Ay =

2 -1
as+a,h,+a\,+...+a, A =e

e A column vector X that satisfies the relation

AX = 0\ X
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where 4 is an n x n matrix and A is a scalar number is called an eigenvector.
det(A-\1) = 0 (5.129)
e There is a different eigenvector for each eigenvalue.

e Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to unit
length. This is done by dividing each component of the eigenvector by the square root of the sum
of the squares of their components, so that the sum of the squares of their components is equal to

unity.

e Two vectors X and Y are said to be orthogonal if their inner (dot) product is zero.

e A set of eigenvectors constitutes an orthonormal basis if the set is normalized (expressed as unit
eigenvectors) and these vector are mutually orthogonal.

o The state transition matrix can be computed from the Inverse Laplace transform using the rela-
tion

M= (-

o If U(s) is the Laplace transform of the input u(7) and Y(s) is the Laplace transform of the out-

put ¥(#), the transfer function can be computed using the relation

-1
Gis) = YO — cs1-ay"b+d
U(s)
e MATLAB provides two very useful functions to convert state space (state equations), to transfer
function (s-domain), and vice versa. The function 882tf (state space to transfer function) converts
the state space equations to the transfer function equivalent, and the function tf2ss, converts the

transfer function to state-space equations.
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5.9 Exercises

1. Express the integrodifferential equation below as a matrix of state equations where
k;, k,, and k; are constants.
2
dv_ + kﬂ—‘—} + kv +k, f vdt = sin3t+ cos3t
dr’ dt 0
2. Express the matrix of the state equations below as a single differential equation, and let
x(y) = ¥,

X, 0 1 0 0 |X 0
}'62 - 0 0 1 0 X2 + 0 u(t)
X3 0 0 0 1| |x; 0
X, -1 -2 -3 4] |x, 1

3. For the circuit of Figure 5.11, all initial conditions are zero, and u(¢) is any input. Write state
equations in matrix form.

_

h
N O

u(t)

Figure 5.11. Circuit for Exercise 3

4. In the circuit of Figure 5.12, all initial conditions are zero. Write state equations in matrix form.

L

R _(T0000L
Q c| 1H CiL
T~ T
V,coswtu(1) OF 2 F’

Figure 5.12. Circuit for Exercise 4

5. In the circuit of Figure 5.13, i,(0") = 2 A. Use the state variable method to find i,(¢) for 1> 0.

R 2Q
LS2H
10u,(t)

Figure 5.13. Circuit for Exercise 5
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6. Compute the eigenvalues of the matrices 4, B, and C below.
0 1 0
L |1 2 g_la o0 c=lo o
3 -1 -a b
-6 -11 -6
Hint: One of the eigenvalues of matrix Cis —/ .

At .
7. Compute e given that

0 1 0
A=10 o0 1
6 -11 -6

Observe that this is the same matrix as C of Exercise 6.

8. Find the solution of the matrix state equation X = Ax + bu given that

A=[_é ﬂ b=u, x0=|:_(ﬂ, u=23(t), ty=0

9. In the circuit of Figure 5.14, i,(0) = 0, and v(0 ) = 1 V.

a. Write state equations in matrix form.

At .
b. Compute " using the Inverse Laplace transform method.

c. Find i;(¢) and v(?) for t>0.

_

3/4 Q 4/3

Figure 5.14. Circuit for Exercice 9
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5.10 Solutions to Exercises

1. Differentiating the given integrodifferential equation with respect to ¢ we get

a’ v’ dv
4 +k3—2+k2—+k,v = 3cos3t—3sin3t = 3(cos3t— sin3t)
t

ar’ dt d
or
av’ v’ dv
2 =k, S5—k,— kv + 3(cos 3t —sin31) (1)
ar’ dri Cdt
We let
dt dt
Then,
d’ _ .
= X3
ar’
and by substitution into (1)
and thus the state equations are
Xy = x;
x'3 = —k;x;—k,x;,—k;x;+ 3(cos3t— sin3t)
and in matrix form
Xq 0 1 0 X 0
x.2 =10 0 1| |x5*|0 - 3(cos3t—sin3t)

X3
Expansion of the given matrix yields
x.I =X, x'z = X; x.j =X, x'4 = —x;—2x,—3x;3—4x,+u(r)
Letting x = y we get
3 2
d dy

di[l+4a%+3%+2—+y:u(t)
' da’ al At
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3.

Weleti, = x; and v = x,. By KCL, i, = i; +i, or

u(t)—v ) dve
& T
or
1) — .
ul) =%z = x;+Cx,
Also,
Then,

x —lx and x ——ix _ L +Lu(t)
1= 2= TCMTRC?TRC

o ] ] oo uld)
o ke —1/Rd x| L1/RC
2

and in matrix form

L .
oo — 1
10 1 H

pl
]

Vel

+
~VYci ~T~VYc2

2 F

Vpcoscot C/|2F ¢

Weleti; = x;,ve; = x,,and v, = x;3. By KCL

Ve, =V cosot _dv
Cl P +2 Cl

+ip =0 orx,-V,cos0t+2x,+x; =0

1 dt
or
: 1 1 1
Xy = =% =0t EVpcoscot 1
By KVL
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di . .
Ve = L'Jf"‘"cz orx, = Ix;+x; orx; = x,-x;3 (2)
Also,

i = C—d% or x; = 2x.3 or x'3 = éxj 3)

Combining (1), (2), and (3) into matrix form we get

X 0 1 =1 |*1 0
Xo| T |=1/2 =172 0| |xy| +|1/2] V,cosot
x'3 1720 0] |x; 0
5.
R 2Q
Lg2H
10u,(t)
From (5.21) of Example 5.4
X = —Izex+]%vsu(,(t)

For this exercise o« = —R/L = -1 and b = 10x(I/L) = 5. Then,

-t ro_
eu( O)xo + ewJ. e “Bu(t)dr
Iy

x(?)

t t
=24 e_tJ. e Suy(t)dv = 2¢ " + 5e_t'|. e‘dr
0 0

=2 +5¢(e' = 1) =2¢" +5-5¢" = (53¢ Yuy(r)

and denoting the current i, as the output y we get

y(1) = x(t) = (53¢ Yuy(1)

A = [’ 2} det(A D) = detu] 2}-7{1 OD - de{]_?“ 2 } =0
3 -1 3 -1 o 1 3 —1-2

(I-2)(=1-2)—6=0
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CI-A+A+A =6 =0

A =7

and thus

A= ﬁ 7"2:—A/_7
b.
B=| 0 det(B—M)=det( a 0) 5|1 0} Y A
—a b —a b 0 1 —a b-\
(a-=A)(b-2L) = 0
and thus

0 1 0 0 1 0 100
C=10o o0 1 det(C-M) =det|| 9 o0 1|=M0 10
—6 -11 -6 -6 -11 -6 00 I
N )
=det| o9 _) 7 | =0
—6 —11 —6-\

A (=6-N) = 6= (=11)(=\) = A+ 607+ 1IN +6 = 0

and it is given that A; = —/. Then,

3 2
: +6(};L:11)M+6 =W +5h+ 6 M+ D(A+2)(A+3) = 0

and thus

a. Matrix A is the same as Matrix C in Exercise 6. Then,
Ay = -1 Ay, = =2 Ay =-3

and since 4 is a 3 x 3 matrix the state transition matrix is

Then,
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2 At —t
ag+a,h;+ahj=e =as-a,+a,=e
2 Ayt -2t
As 3t

2 t _
ag+alz;+aly3=e’ =a,-3a,+9a,=e

symst; A=[1 -1 1;1 -2 4;1 -3 9];...

a=sym('[exp(-1); exp(—2*1); exp(—3*1)]); x=A\a; fprintf(' \n");...

disp('a0 ="); disp(x(1)); disp('a1l ="); disp(x(2)); disp(a2 ="); disp(x(3))
a0 =

3*exp(-t)-3*exp(-2*t)+exp(-3*t)

2}2*exp(—t)—4*exp(—2*t)+3/2*exp(—3*t)
az =
1/2%exp(-t) —exp(-2*t)+1/2*exp (-3*t)
Thus,

a, = 3¢ -3¢ 4307

a, = 25¢ " — 4 41567

a, = 05¢ "~ +05¢7"

Now, we compute ¢ of (1) with the following MATLAB code:
syms t; a0=3*exp(-t)-3*exp(—2*t) +exp(—3*t); al=5/2*exp(-t)—4*exp(—2*t)+3/2*exp(—

3*1);...
a2=1/2*exp(-t)—exp(—2*t) +1/2*exp(-3*t); A=[01 0; 0 0 1; -6 —11 —6]; fprintf(' \n");...
eAt=al0*eye(3)+al*A+a2*A" 2
eAt =
[ 3*exp(-t)-3*exp(-2*t)+exp(-3*t), 5/2*exp(-t)-4*exp (-2*t)+3/2*exp(-3*t), 1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)]
[-3*exp(-t)+6*exp (-2*t)-3*exp(-3*t), -5/2%*exp(-t)+8*exp(-2*t)-9/2*exp(-3*t), -1/2*exp(-t)+2*exp(-2*t)-3/2%exp(-3*t)]
[3*exp(-t)-12%exp(-2*t)+9*%exp (-3*t), 5/2%exp(-t)-16*exp(-2*t)+27/2*%exp(-3*t), 1/2%exp(-t)-4*exp(-2*t)+9/2%exp (-3*t)]
Then,
— -2 - - -2 - — -2 —
3¢ -3¢ v e 25 —4e w157 05e —e P v 0.5¢7"
At
€ = 301607 237 25+ 8¢ —45¢7"  _05e 4207 1507
- -2 -3 - -2 -3 - -2 -3
3¢ —12¢7 +9¢7" 25¢ —16e 7 +13.5¢7  0.5¢ -4 +4.5¢ 7"
8.
a= 10 s w2 |7, wu=80), 1,=0
-2 2 2
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t t
x(t) = eA(t_O)x0+eAtJ. e hu(t)dr = eAtx0+eAt'[ e_ATbS(r)dr
0 0

eAtx0+ eAtb = eAt(x0+ b) = eAt[ -1 + 1 J = eAt 0
0 2 2

We use the following MATLLAB code to find the eigenvalues A; and A,

A=[1 0; -2 2]; lambda=eig(A); fprintf(' \n";...
fprintf(lambdal = %4.2f \t'lambda(1)); fprintf(lambda2 = %4.2f \t'lambda(2))

lambdal = 2.00 lambda2 = 1.00

(1

Next,
klt t
ay+ah;=e =as+a;=e
Ayt 2t
Then,
t 2t 2t t
ay = 2e —e a, =e —e
and

Q
|

-2 2

2e' - ezz 0 " eZt _p 0 _ ¢ 0
0 2e' - ezt —2e2t + 26 2e2t —-2¢' 2e' - ZeZt ezt

By substitution into (1) we get

x(f) = eA’H - ¢ 0 [
2 20/~ 267 &

At agl+a,A = (Zet—eh)[l 0i|+(62t—€t)|:] 0}
0 1

and thus
2t
x; =0 X, = 2e
9.
j l, Cﬁli 0 =0
i L c -
Re® L ~ ve0) =1V
3/4Q 4H \ 4/3F
Welet x; = i x, = ve. Then,
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a.
VC . VC
=+i;+C— =10
R
X, 4 -
3—/—4+x1+§x2 = 0
or
: 3
Xy = _sz_xz M
Also,
di .
VL=VC=L—Z]-§=4XI=XZ
or
: 1
X, =3, @

From (1) and (2)
x| _ [ 0 1/4] X
X, -3/4 -1 X,

Sy | 0 14
~3/4 -1

A

M= sr— AT

and thus

sroap= |8 Ol 0 e s -4
0 s |=-3/4 -1 3/4 s+1

A = det[sI-A] = det| 5 U/ = 1543/16 = (s+1/4)(s +3/4)
3/4 s+1

adi[sI-A] = adj| § ~1/4| = | s+1 1/4
3/4 s+1 ~3/4 s
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T ; s+1 1/4
[sT-A]" = Aadj[SI 4] = (s+1/4)(S+3/4){—3/4 s }
o 1/4
(s+1/4)(s+3/4)  (s+1/4)(s+3/4)

~3/4 s
(s+1/4)(s+3/4)  (s+1/4)(s+3/4)

We use MATLAB to find ¢! = <& _l{[S]—A]_I} with the code below.

syms st

Fs1=(s+1)/(s~2+s+3/16); Fs2=(1/4)/(s™~2+s+3/16); Fs3=(-3/4)/(s™~2+s+3/16); Fs4=s/
(s~ 2+s+3/16);...

fprintf(' \n'); disp(a11 =); disp(simple(ilaplace(Fs1))); disp(‘a12 ="); disp(simple(ilaplace(Fs2)));...
disp('a21 ="); disp(simple(ilaplace(Fs3))); disp('a22 = "); disp(simple(ilaplace(Fs4)))

all =
-1/2%exp(-3/4*t)+3/2%exp(-1/4*t)
al2 =
1/2%exp(-1/4*t)-1/2*exp(-3/4*t)
a2l =
-3/2%exp(-1/4*t)+3/2%exp(-3/4*t)
a22 =
3/2*%exp(-3/4*t)-1/2%exp(-1/4*t)
Thus,
Al _ 1507051 _ o 5,075 05605 _ 0 567075
15070 [ 57075 570250 g 5 70750

t
x(1) = eA(t—O)x0+eAt'|’ e_Atbu(r)dt _ eAtx0+0 _ eAt[{O} N {()D
0 1 0

—0.25¢ —0.75¢

1.5e
~0.25¢ ~0.751 ~0.251 ~0.75t| | J ~0.25¢ ~0.751

—0.5¢ 0.50°025 _ 9 507075 H ) 0.56025 _ g 50,7075
—1.5e + 1.5e —0.5e + 1.5e —0.5e +1.5e

and thus for >0

—0.25¢ —0.75t -0.25¢ -0.75t

x; =i, = 05e 0.5e X, = ve = =0.5e +1.5e
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