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Chapter 5

State Variables and State Equations

his chapter is an introduction to state variables and state equations as they apply in circuit anal-

ysis. The state transition matrix is defined, and the state space-to-transfer function equivalence

is presented. Several examples are given to illustrate their application.

5.1 Expressing Differential Equations in State Equation Form

As we know, when we apply KCL or KVL in networks that contain energy-storing devices, we

obtain integro-differential equations. Also, when a network contains just one such device (capacitor

or inductor), it is said to be a first order circuit. If it contains two such devices, it is said to be second-

order circuit, and so on. Thus, a first order linear, time-invariant circuit can be described by a differ-

ential equation of the form

(5.1)

A second order circuit can be described by a second-order differential equation of the same form as

(5.1) where the highest order is a second derivative.

An nth-order differential equation can be resolved to  first-order simultaneous differential equa-

tions with a set of auxiliary variables called state variables. The resulting first-order differential equa-

tions are called state space equations, or simply state equations. These equations can be obtained

either from the nth-order differential equation, or directly from the network, provided that the state

variables are chosen appropriately. The state variable method offers the advantage that it can also be

used with non-linear and time-varying devices. However, our discussion will be limited to linear,

time-invariant circuits.

State equations can also be solved with numerical methods such as Taylor series and Runge-Kutta

methods, but these will not be discussed in this text*. The state variable method is best illustrated

through several examples  presented in this chapter. 

Example 5.1  

A series  circuit with excitation 

(5.2)

* These are discussed in “Numerical Analysis using MATLAB and Spreadsheets” ISBN 0-9709511-1-6.
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is described by the integro-differential equation

(5.3)

Differentiating both sides and dividing by  we get

(5.4)

or

(5.5)

Next, we define two state variables  and  such that

(5.6)

and

(5.7)

Then,

(5.8)

where  denotes the derivative of the state variable .

From (5.5) through (5.8), we obtain the state equations

(5.9)

It is convenient and customary to express the state equations in matrix* form. Thus, we write the

state equations of (5.9) as

(5.10)

* For a review of matrix theory, please refer to Appendix C.
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Expressing Differential Equations in State Equation Form

We usually write (5.10) in a compact form as

(5.11)

where

(5.12)

The output  is expressed by the state equation

(5.13)

where  is another matrix, and  is a column vector. Therefore, the state representation of a net-

work can be described by the pair of the of the state space equations

 (5.14)

The state space equations of (5.14) can be realized with the block diagram of Figure 5.1.

Figure 5.1. Block diagram for the realization of the state equations of (5.14)

We will learn how to solve the matrix equations of (5.14) in the subsequent sections.

Example 5.2  

A fourth-order network is described by the differential equation

(5.15)

where  is the output representing the voltage or current of the network, and  is any input.

Express (5.15) as a set of state equations.
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Solution:

The differential equation of (5.15) is of fourth-order; therefore, we must define four state variables

that will be used with the resulting four first-order state equations. 

We denote the state variables as , and , and we relate them to the terms of the given dif-

ferential equation as

(5.16)

We observe that

(5.17)

and in matrix form 

(5.18)

In compact form, (5.18) is written as

(5.19)

where

We can also obtain the state equations directly from given circuits. We choose the state variables to

represent inductor currents and capacitor voltages. In other words, we assign state variables to

energy storing devices. The examples that follow illustrate the procedure.
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Example 5.3  

Write state equation(s) for the circuit of Figure 5.2, given that .

Figure 5.2. Circuit for Example 5.3

Solution:

This circuit contains only one energy-storing device, the capacitor. Therefore, we need only one

state variable. We choose the state variable to denote the voltage across the capacitor as shown in

Figure 5.3. The output is defined as the voltage across the capacitor.

Figure 5.3. Circuit for Example 5.3 with state variable x assigned to it

For this series circuit,

and

By KVL,

or

Therefore, the state equations are

(5.20)
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Example 5.4

Write state equation(s) for the circuit of Figure 5.4 assuming , and the output  is defined

as .

Figure 5.4. Circuit for Example 5.4

Solution:

This circuit contains only one energy-storing device, the inductor; therefore, we need only one state

variable. We choose the state variable to denote the current through the inductor as shown in Figure

5.5.

Figure 5.5. Circuit for Example 5.4 with state variable x assigned to it

By KVL,

or

or

Therefore, the state equations are

(5.21)
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5.2 Solution of Single State Equations

If a circuit contains only one energy-storing device, the state equations are written as

(5.22)

where , , , and  are scalar constants, and the initial condition, if non-zero, is denoted as

(5.23)

We will now prove that the solution of the first state equation in (5.22) is

(5.24)

Proof:

First, we must show that (5.24) satisfies the initial condition of (5.23). This is done by substitution of

 in (5.24). Then, 

(5.25)

The first term in the right side of (5.25) reduces to  since

(5.26)

The second term of (5.25) is zero since the upper and lower limits of integration are the same.

Therefore, (5.25) reduces to  and thus the initial condition is satisfied. 
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(5.27)

We observe that the bracketed terms of (5.27) are the same as the right side of the assumed solution

of (5.24). Therefore, 

and this is the same as the first equation of (5.22).

In summary, if and are scalar constants, the solution of

(5.28)

with initial condition

 (5.29)

is obtained from the relation

(5.30)

Example 5.5

Use (5.28) through (5.30) to find the capacitor voltage  of the circuit of Figure 5.6 for ,

given that the initial condition is 

Figure 5.6. Circuit for Example 5.5

Solution:

From (5.20) of Example 5.3, 
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The State Transition Matrix

Then, from (5.30),

or

(5.31)

If we assume that the output y is the capacitor voltage, the output state equation is

(5.32)

5.3 The State Transition Matrix

In Section 5.1 we defined the state equations pair

(5.33)

where for two or more simultaneous differential equations,  and  are  or higher order

matrices, and  and  are column vectors with two or more rows. In this section we will introduce

the state transition matrix , and we will prove that the solution of the matrix differential equation 

(5.34)

with initial conditions

(5.35)

is obtained from the relation

(5.36)

Proof:
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where  is the  identity matrix.

From (5.37), we find that

(5.38)

Differentiation of (5.37) with respect to  yields

(5.39)

and by comparison with (5.37) we get

(5.40)

To prove that (5.36) is the solution of (5.34), we must prove that it satisfies both the initial condition

and the matrix differential equation. The initial condition is satisfied from the relation

(5.41)
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limits of integration are the same.

To prove that (5.34) is also satisfied, we differentiate the assumed solution
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Computation of the State Transition Matrix

In summary, if  is an  matrix whose elements are constants, , and  is a column vector

with n elements, the solution of

(5.43)

with initial condition

(5.44)

is

(5.45)

Therefore, the solution of second or higher order circuits using the state variable method, entails the

computation of the state transition matrix , and integration of (5.45).

5.4 Computation of the State Transition Matrix 

Let  be an  matrix, and  be the  identity matrix. By definition, the eigenvalues ,

 of  are the roots of the nth order polynomial

(5.46)

We recall that expansion of a determinant produces a polynomial. The roots of the polynomial of

(5.46) can be real (unequal or equal), or complex numbers.

Evaluation of the state transition matrix  is based on the Cayley-Hamilton theorem. This theorem

states that a matrix can be expressed as an  degree polynomial in terms of the matrix  as

(5.47)

where the coefficients  are functions of the eigenvalues 

We accept (5.47) without proving it. The proof can be found in Linear Algebra and Matrix Theory

textbooks.

Since the coefficients  are functions of the eigenvalues , we must consider the following cases:

Case I: Distinct Eigenvalues (Real or Complex)
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(5.48)

Example 5.6

Compute the state transition matrix  given that 

Solution:

We must first find the eigenvalues  of the given matrix . These are found from the expansion of

For this example,

or

Therefore,

(5.49)

Next, we must find the coefficients  of (5.47). Since  is a  matrix, we only need to consider

the first two terms of that relation, that is,

(5.50)

The coefficients  and  are found from (5.48). For this example,
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Computation of the State Transition Matrix

Simultaneous solution of (5.51) yields

(5.52)

and by substitution into (5.50),

or

(5.53)

In summary, we compute the state transition matrix  for a given matrix  using the following

procedure:

1. We find the eigenvalues  from . We can write  at once by subtracting

 from each of the main diagonal elements of . If the dimension of  is a matrix, it will

yield two eigenvalues; if it is a matrix, it will yield three eigenvalues, and so on. If the eigen-

values are distinct, we perform steps 2 through 4; otherwise we refer to Case II below.

2. If the dimension of  is a  matrix, we use only the first 2 terms of the right side of the state

transition matrix 

(5.54)

If  matrix is a  matrix, we use the first 3 terms, and so on.

3. We obtain the coefficients from

We use as many equations as the number of the eigenvalues, and we solve for the coefficients .

4. We substitute the coefficients into the state transition matrix of (5.54), and we simplify.
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Example 5.7

Compute the state transition matrix  given that

(5.55)

Solution:

1. We first compute the eigenvalues from . We obtain  at once, by subtract-

ing  from each of the main diagonal elements of . Then,

(5.56)

and expansion of this determinant yields the polynomial

 (5.57)

We will use MATLAB roots(p) function to obtain the roots of (5.57).

p=[1  6  11  6]; r=roots(p); fprintf(' \n'); fprintf('lambda1 = %5.2f \t', r(1));...
fprintf('lambda2 = %5.2f \t', r(2)); fprintf('lambda3 = %5.2f', r(3))

lambda1 = 3.00   lambda2 = 2.00   lambda3 = 1.00

and thus the eigenvalues are

(5.58)

2. Since  is a matrix, we need to use the first  terms of (5.54), that is,
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(5.60)

We will use the following MATLAB code for the solution of (5.60).

B=sym('[1  1  1; 1  2  4; 1  3  9]'); b=sym('[exp(t); exp(2*t); exp(3*t)]'); a=B\b; fprintf(' \n');...

disp('a0 = '); disp(a(1)); disp('a1 = '); disp(a(2)); disp('a2 = '); disp(a(3))

a0 = 
3*exp(t)-3*exp(2*t)+exp(3*t)
a1 = 
-5/2*exp(t)+4*exp(2*t)-3/2*exp(3*t)
a2 = 
1/2*exp(t)-exp(2*t)+1/2*exp(3*t)

Thus,

(5.61)

4. We also use MATLAB to perform the substitution into the state transition matrix, and to per-

form the matrix multiplications. The code is shown below.

syms t; a0 = 3*exp(t)+exp(3*t)-3*exp(2*t); a1 = -5/2*exp(t)-3/2*exp(3*t)+4*exp(2*t);...
a2 = 1/2*exp(t)+1/2*exp(3*t)-exp(2*t);...
A = [5  7  5;  0  4  1;  2  8  3]; eAt=a0*eye(3)+a1*A+a2*A^2

eAt =
[  -2*exp(t)+2*exp(2*t)+exp(3*t),  -6*exp(t)+5*exp(2*t)+exp(3*t),   4*exp(t)-3*exp(2*t)-exp(3*t)]
[    -exp(t)+2*exp(2*t)-exp(3*t),  -3*exp(t)+5*exp(2*t)-exp(3*t),   2*exp(t)-3*exp(2*t)+exp(3*t)]
[  -3*exp(t)+4*exp(2*t)-exp(3*t), -9*exp(t)+10*exp(2*t)-exp(3*t),   6*exp(t)-6*exp(2*t)+exp(3*t)]

Thus,
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has roots, and  of these roots are equal. In other words, the roots are 

(5.63)

The coefficients  of the state transition matrix

(5.64)

are found from the simultaneous solution of the system of equations of (5.65) below.

(5.65)

Example 5.8

Compute the state transition matrix  given that

Solution:

1. We first find the eigenvalues  of the matrix  and these are found from the polynomial of

. For this example,

n m

1 2= 3= m, m 1+  ,  n=

ai

e
At

a0I a1A a2A
2

an 1– A
n 1–+ + + +=

a0 a1 1 a2 1

2
an 1– 1

n 1–+ + + + e
1t

=

d

d 1

--------- a0 a1 1 a2 1

2
an 1– 1

n 1–+ + + +
d

d 1

--------e
1t

=

d
2

d 1

2
-------- a0 a1 1 a2 1

2
an 1– 1

n 1–+ + + +
d

2

d 1

2
--------e

1t
=

d
m 1–

d 1

m 1–
--------------- a0 a1 1 a2 1

2
an 1– 1

n 1–+ + + +
d

m 1–

d 1

m 1–
---------------e

1t
=

a0 a1 m 1+ a2 m 1+
2

an 1– m 1+
n 1–+ + + + e

m 1+ t
=

a0 a1 n a2 n

2
an 1– n

n 1–+ + + + e
nt

=

e
At

A
1– 0

2 1–
=

A

det A I– 0=

det A I– det
1– – 0

2 1– –
0= =

1– – 1– – 0==

1+ 2
0==
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and thus,

2. Since  is a  matrix, we only need the first two terms of the state transition matrix, that is,

(5.66)

3. We find  and  from (5.65). For this example,

or

and by substitution with , we get

Simultaneous solution of the last two equations yields

(5.67)

4. By substitution of (5.67) into (5.66), we get 

or

(5.68)

We can use the MATLAB eig(x) function to find the eigenvalues of an  matrix. To find out

how it is used, we invoke the help eig command.

1 2 1–= =

A 2 2

e
At

a0I a1A+=

a0 a1

a0 a1 1+ e
1t

=

d

d 1

--------- a0 a1 1+
d

d 1

---------e
1t

=

a0 a1 1+ e
1t

=

a1 te
1t

=

1 2 1–= =

a0 a1– e
t–=

a1 te
t–=

a0 e
t–

te
t–+=

a1 te
t–=

e
At

e
t–

te
t–+ 1 0

0 1
te

t– 1– 0

2 1–
+=

e
At e

t–
0

2te
t–

e
t–

=

n n
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We will first use MATLAB to verify the values of the eigenvalues found in Examples 5.6 through 5.8,

and we will briefly discuss eigenvectors on the next section.

For Example 5.6

A= [ 2  1; 0  1]; lambda=eig(A)

lambda =
    -2
    -1

For Example 5.7

B = [5  7  5;  0  4 1;  2  8  3]; lambda=eig(B)

lambda =
    1.0000
    3.0000
    2.0000

For Example 5.8

C = [ 1  0; 2  1]; lambda=eig(C)

lambda =
    -1
    -1

5.5 Eigenvectors

Consider the relation

(5.69)

where  is an  matrix,  is a column vector, and  is a scalar number. We can express this rela-

tion in matrix form as

 (5.70)

We write (5.70) as

(5.71)

Then, (5.71) can be written as

AX X=

A n n X

a11 a12 a1n

a21 a22 a2n

an1 an2 ann

x1

x2

xn

x1

x2

xn

=

A I– X 0=
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(5.72)

The equations of (5.72) will have non-trivial solutions if and only if its determinant is zero*, that is, if

(5.73)

Expansion of the determinant of (5.73) results in a polynomial equation of degree  in  and it is

called the characteristic equation.

We can express (5.73) in a compact form as

(5.74)

As we know, the roots  of the characteristic equation are the eigenvalues of the matrix , and cor-

responding to each eigenvalue there is a non-trivial solution of the column vector , i.e., .

This vector  is called eigenvector. Obviously, there is a different eigenvector for each eigenvalue.

Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to unit length.

This is done by dividing each component of the eigenvector by the square root of the sum of the

squares of their components, so that the sum of the squares of their components is equal to unity.

In many engineering applications the unit eigenvectors are chosen such that  where  is

the transpose of the eigenvector , and is the identity matrix.

Two vectors and  are said to be orthogonal if their inner (dot) product is zero. A set of eigenvec-

tors constitutes an orthonormal basis if the set is normalized (expressed as unit eigenvectors) and

these vector are mutually orthogonal. An orthonormal basis can be formed with the Gram-Schmidt

Orthogonalization Procedure; it is beyond the scope of this chapter to discuss this procedure, and

therefore it will not be discussed in this text. It can be found in Linear Algebra and Matrix Theory

textbooks.

The example which follows, illustrates the relationships between a matrix , its eigenvalues, and

eigenvectors.

* This is because we want the vector X in (5.71) to be a non-zero vector and the product  to be zero.

a11 – x1 a12x2 a1nxn

a21x1 a22– x2 a2nxn

an1x1 an2x2 ann – xn

0=

A I– X

det

a11 – a12 a1n

a21 a22– a2n

an1 an2 ann –

0=

n

det A I– 0=

A

X X 0

X

X X
T

I= X
T

X I

X Y

A
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Example 5.9

Given the matrix

a. Find the eigenvalues of 

b. Find eigenvectors corresponding to each eigenvalue of 

c. Form a set of unit eigenvectors using the eigenvectors of part (b).

Solution:

a. This is the same matrix as in Example 5.7, where we found the eigenvalues to be

b. We start with

and we let

Then,

(5.75)

or

(5.76)

Equating corresponding rows and rearranging, we get

A

5 7 5–

0 4 1–

2 8 3–

=

A

A

1 1= 2 2= 3 3=

AX X=

X

x1

x2

x3

=

5 7 5–

0 4 1–

2 8 3–

x1

x2

x3

x1

x2

x3

=

5x1 7x2 5x3–

0 4x2 x3–

2x1 8x2 3x3–

x1

x2

x3

=
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Eigenvectors

(5.77)

For , (5.77) reduces to

(5.78)

By Crame’s rule, or MATLAB, we get the indeterminate values

(5.79)

Since the unknowns  are scalars, we can assume that one of these, say , is known,

and solve  and  in terms of . Then, we get , and . 

Therefore, an eigenvector for  is

(5.80)

since any eigenvector is a scalar multiple of the last vector in (5.80).

Similarly, for  we get , and . Then, an eigenvector for  is

(5.81)

Finally, for we get , and . Then, an eigenvector for  is

(5.82)

c. We find the unit eigenvectors by dividing the components of each vector by the square root of

the sum of the squares of the components. These are:

5 – x1 7x2 5x3–

0 4 – x2 x3–

2x1 8x2 3 – x3–

0

0

0

=

1=

4x1 7x2 5x3–+ 0=

3x2 x3– 0=

2x1 8x2 4x3–+ 0=

x1 0 0= x2 0 0= x3 0 0=

x1 x2  and x3 x2

x1 x3 x2 x1 2x2= x3 3x2=

1=

X 1=

x1

x2

x3

=
2x2

x2

3x2

x2

2

1

3

2

1

3

= = =

2= x1 x2= x3 2x2= 2=

X 2=

x1

x2

x3

=
x2

x2

2x2

x2

1

1

2

1

1

2

= = =

3= x1 x– 2= x3 x2= 3=

X 3=

x1

x2

x3

=
x– 2

x2

x2

x2

1–

1

1

1–

1

1

= = =
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The unit eigenvectors are

 (5.83)

We observe that for the first unit eigenvector the sum of the squares is unity, that is,

(5.84)

and the same is true for the other two unit eigenvectors in (5.83).

5.6 Circuit Analysis with State Variables

In this section, we will present two examples to illustrate how the state variable method is used in cir-

cuit analysis.

Example 5.10

For the circuit of Figure 5.7, the initial conditions are , and . Use the state

variable method to compute  and .

Figure 5.7. Circuit for Example 5.10
Solution:

For this example,

2
2

1
2

3
2+ + 14=

1
2

1
2

2
2+ + 6=

1– 2
1

2
1

2+ + 3=

Unit X 1=

2

14
----------

1

14
----------

3

14
----------

= Unit X 2=

1

6
-------

1

6
-------

2

6
-------

= Unit X 3=

1–

3
-------

1

3
-------

1

3
-------

=

2

14
----------

2 1

14
----------

2 3

14
----------

2

+ + 4

14
------

1

14
------

9

14
------+ + 1= =

iL 0 0= vc 0 0.5 V=

iL t vc t

+
R

L

+
C1

vs t u0 t=

vC t
i t

1 4 H

4 3 F

i iL=
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and

Substitution of given values and rearranging, yields

or

(5.85)

Next, we define the state variables  and . Then,

(5.86)

and

Also,

and thus,

or

(5.87)

Therefore, from (5.85), (5.86), and (5.87), we get the state equations

and in matrix form,

(5.88)

We will compute the solution of (5.88) using

RiL L
diL

dt
------- vC+ + u0 t=

1

4
---

diL

dt
------- 1– iL vC– 1+=

diL

dt
------- 4iL– 4vC– 4+=

x1 iL= x2 vC=

x·1

diL

dt
-------=

x·2

dvC

dt
--------=

iL C
dvC

dt
--------=

x1 iL C
dvC

dt
-------- Cx·2

4

3
---x·2= = = =

x·2

3

4
---x1=

x·1 4x1– 4x2– 4+=

x·2

3

4
--- x1=

x·1

x·2

4– 4–

3 4 0

x1

x2

4

0
u0 t+=
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(5.89)

where

    (5.90)

First, we compute the state transition matrix . We find the eigenvalues from

Then,

Therefore,

The next step is to find the coefficients . Since  is a  matrix, we only need the first two

terms of the state transition matrix, that is,

(5.91)

The constants  and  are found from

and with , we get

(5.92)

Simultaneous solution of (5.92) yields

(5.93)

We now substitute these values into (5.91), and we get

x t e
A t t0–

x0 e
At

e
A–

bu d
t0

t

+=

A
4– 4–

3 4 0
= x0

iL 0

vC 0

0

1 2
= = b

4

0
=

e
At

det A I– 0=

det A I– det
4– – 4–

3 4 –
0= =

– 4– – 3+ 0==
2

4 3+ + 0==

1 1  and  2 3–=–=

ai A 2 2

e
At

a0I a1A+=

a0 a1

a0 a1 1+ e
1t

=

a0 a1 2+ e
2t

=

1 1  and  2 3–=–=

a0 a1– e
t–=

a0 3a– 1 e
3t–=

a0 1.5e
t–

0.5e
3t––=

a1 0.5e
t–

0.5e
3t––=



Signals and Systems with MATLAB Applications, Second Edition 5-25

Orchard Publications

Circuit Analysis with State Variables

or

The initial conditions vector is the second vector in (5.90); then, the first term of (5.89) becomes

or

(5.94)

We also need to evaluate the integral on the right side of (5.89). From (5.90)

and denoting this integral as , we have

or

(5.95)

e
At

1.5e
t–

0.5e
3t–– 1 0

0 1
0.5e

t–
0.5e

2t–– 4– 4–

3 4 0
+=

1.5e
t–

0.5e
3t–– 0

0 1.5e
t–

0.5e
3t––

2– e
t–

2e
3t–+ 2– e

t–
2e

3t–+

3

8
---e

t– 3

8
---e

3t–
– 0

+=

e
At

0.5– e
t–

1.5e
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2e

3t–+

3

8
---e

t– 3

8
---e

3t–
– 1.5e

t–
0.5e

3t––
=

e
At

x0

0.5– e
t–

1.5e
3t–+ 2– e

t–
2e

3t–+

3

8
---e

t– 3

8
---e

3t–
– 1.5e

t–
0.5e

3t––

0

1 2
=

e
At

x0
e

t–– e
3t–+

0.75e
t–

0.25e
3t––

=

b
4

0

1

0
4= =

Int

Int
0.5– e

t ––
1.5e

3 t ––+ 2– e
t ––

2e
3 t ––+

3

8
---e

t –– 3

8
---e

3 t ––
– 1.5e

t ––
0.5e

3 t –––

1

0
4d

t0

t

=

Int
0.5– e

t ––
1.5e

3 t ––+

3

8
---e

t –– 3

8
---e

3 t ––
–
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The integration in (5.95) is with respect to ; then, integrating the column vector under the integral,

we get

or

By substitution of these values, the solution of

is

Then,

(5.96)

and

(5.97)

Other variables of the circuit can now be computed from (5.96) and (5.97). For example, the voltage

across the inductor is

Example 5.11

A circuit is described by the state equation

(5.98)

where

            and  (5.99)

Int 4
0.5– e

t ––
0.5e

3 t ––+

0.375e
t ––

0.125e
3 t –––

0=

t

=

Int 4
0.5– 0.5+

0.375 0.125–
4

0.5– e
t–

0.5e
3t–+

0.375e
t–

0.125e
3t––

– 4
0.5e

t–
0.5– e

3t–

0.25 0.375– e
t–

0.125e
3t–+

= =

x t e
A t t0–

x0 e
At

e
A–

bu d
t0

t

+=

x1

x2

e
t–– e

3t–+

0.75e
t–

0.25e
3t––

4
0.5e

t–
0.5– e

3t–

0.25 0.375– e
t–

0.125e
3t–+

+ e
t–

e– 3t–

1 0.75– e
t–

0.25e
3t–+

= =

x1 iL e
t–

e– 3t–= =

x2 vC 1 0.75e– t–
0.25e

3t–+= =

vL L
diL

dt
-------

1

4
---

d

dt
----- e

t–
e– 3t– 1

4
---e

t––
3

4
---e

3t–+= = =

x· Ax bu+=

A 1 0

1 1–
= x0

1

0
= b 1–

1
= u t=
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Compute the state vector

Solution:

We compute the eigenvalues from

For this example,

Then,

Since  is a  matrix, we only need the first two terms of the state transition matrix to find the

coefficients , that is,

(5.100)

The constants  and  are found from

(5.101)

and with , we get

(5.102)

and simultaneous solution of (5.102) yields

By substitution of these values into (5.100), we get

x
x1

x2

=

det A I– 0=

det A I– det
1 – 0

1 1––
0= =

1– 1– – 0==

1 1  and  2 1–==

A 2 2

ai

e
At

a0I a1A+=

a0 a1

a0 a1 1+ e
1t

=

a0 a1 2+ e
2t

=

1 1  and  2 1–==

a0 a1+ e
t=

a0 a– 1 e
t–=

a0
e

t
e

t–+
2

---------------- tcosh= =

a1
e

t
e

t––
2

---------------- tsinh= =
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(5.103)

The values of the vector  are found from

(5.104)

Using the sifting property of the delta function we find that (5.104) reduces to

Therefore,

(5.105)

5.7 Relationship between State Equations and Laplace Transform

In this section, we will show that the state transition matrix can be computed from the Inverse

Laplace transform. We will also show that the transfer function can be found from the coefficient

matrices of the state equations.

Consider the state equation

(5.106)

Taking the Laplace of both sides of (5.106), we get

or

(5.107)

Multiplying both sides of (5.107) by , we get

(5.108)

Comparing (5.108) with

e
At

tcosh I tsinh A+ tcosh
1 0

0 1
tsinh

1 0

1 1–
+ tcosh tsinh+ 0

tsinh tcosh tsinh–
= ==

x

x t e
A t t0–

x0 e
At

e
A–

bu d
t0

t

+ e
At

x0 e
At

e
A–

b d
0

t

+= =

x t e
At

x0 e
At

b+ e
At

x0 b+ e
At 1

0

1–

1
+ e

At 0

1
= = = =

tcosh tsinh+ 0

tsinh tcosh tsinh–

0

1

x1

x2

==

x
x1

x2

0

tcosh tsinh–

0

e
t–

= = =

x· Ax bu+=

sX s x 0– AX s bU s+=

sI A– X s x 0 bU s+=

sI A– 1–

X s sI A– 1–
x 0 sI A– 1–

bU s+=
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(5.109)

we observe that the right side of (5.108) is the Laplace transform of (5.109). Therefore, we can com-

pute the state transition matrix  from the Inverse Laplace of , that is, we can use the

relation

(5.110)

Next, we consider the output state equation 

(5.111)

Taking the Laplace of both sides of (5.111), we get

(5.112)

and using (5.108), we get

(5.113)

If the initial condition , (5.113) reduces to

(5.114)

In (5.114),  is the Laplace transform of the input ; then, division of both sides by 

yields the transfer function

 (5.115)

Example 5.12  

In the circuit of Figure 5.8, all initial conditions are zero. Compute the state transition matrix 

using the Inverse Laplace transform method.

Figure 5.8. Circuit for Example 5.12

x t e
At

x0 e
At

e
A–

bu d
0

t

+=

e
At

sI A– 1–

e
At L 1–

sI A– 1–=

y Cx du+=

Y s CX s dU s+=

Y s C sI A– 1–
x 0 C sI A– 1–

b d+ U s+=

x 0 0=

Y s C sI A– 1–
b d+ U s=

U s u t U s

G s
Y s

U s
----------- C sI A– 1–

b d+= =

e
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+
R

L

+
C3

vs t u0 t=
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i t
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Solution:

For this circuit,

and

Substitution of given values and rearranging,

(5.116)

Now, we define the state variables

and

Then,

(5.117)

and

Also,

 (5.118)

and thus,

or

(5.119)

Therefore, from (5.117) and (5.119) we get the state equations

 (5.120)

and in matrix form,

(5.121)

i iL=

RiL L
diL

dt
------- vC+ + u0 t=

diL

dt
------- 3– iL vC– 1+=

x1 iL=

x2 vC=

x·1

diL

dt
------- 3– iL vC– 1+= =

x·2

dvC

dt
--------=

iL C
dvC

dt
-------- 0.5

dvC

dt
--------= =

x1 iL 0.5
dvC

dt
-------- 0.5x·2= = =

x·2 2x1=

x·1 3x1– x2– 1+=

x·2 2x1=

x·1

x·2

3– 1–

2 0

x1

x2

1

0
1+=
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By inspection,

(5.122)

Now, we will find the state transition matrix from

(5.123)

where

Then,

We find the Inverse Laplace of each term by partial fraction expansion. Then,

Now, we can find the state variables representing the inductor current and the capacitor voltage

from

using the procedure of Example 5.11.

MATLAB provides two very useful functions to convert state space (state equations), to transfer

function (s-domain), and vice versa. The function ss2tf (state space to transfer function) converts

the state space equations

* (5.124)

to the rational transfer function form

(5.125)

* We have used capital letters for vectors b and c to be consistent with MATLAB’s designations.

A
3– 1–
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=

e
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This is used with the statement [num,den]=ss2tf(A,B,C,D,iu) where A, B, C, D are the matrices of

(5.124) and iu is  if there is only one input. The MATLAB help command provides the following

information:

help ss2tf

 SS2TF  State-space to transfer function conversion.
    [NUM,DEN] = SS2TF(A,B,C,D,iu) calculates the
     transfer function:

                NUM(s)          -1
        G(s) = -------- = C(sI-A) B + D
                DEN(s)

    of the system:

        x = Ax + Bu
        y = Cx + Du

from the iu'th input. Vector DEN contains the coefficients of
the denominator in descending powers of s. The numerator coeffi-
cients are returned in matrix NUM with as many rows as there
are outputs y.

    See also TF2SS

The other function, tf2ss, converts the transfer function of (5.125) to the state-space equations of

(5.124). It is used with the statement [A,B,C,D]=tf2ss(num,den) where A, B, C, and D are the

matrices of (5.124), and num, den are  and  of (5.125) respectively. The MATLAB help

command provides the following information:

help tf2ss

 TF2SS  Transfer function to state-space conversion.
    [A,B,C,D] = TF2SS(NUM,DEN) calculates the state-space 
    representation:

        x = Ax + Bu
        y = Cx + Du

    of the system:

                 NUM(s) 
        G(s) = --------
                 DEN(s)
from a single input. Vector DEN must contain the coefficients of
the denominator in descending powers of s. Matrix NUM must con-

1

N s D s
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tain the numerator coefficients with as many rows as there are
outputs y. The A,B,C,D matrices are returned in controller canon-
ical form. This calculation also works for discrete systems. To
avoid confusion when using this function with discrete systems,
always use a numerator polynomial that has been padded with zeros
to make it the same length as the denominator. See the User's
guide for more details.

    See also SS2TF.

Example 5.13  

For the circuit of Figure 5.9,

Figure 5.9. Circuit for Example 5.13

a. Derive the state equations and express them in matrix form as 

b. Derive the transfer function

c. Verify your answers with MATLAB.

Solution:

a. The differential equation describing the circuit is

and with the given values,

or

+
R

L

+
C1

vs t u0 t=

vC t vout t=
i t

1 H

1 F

x· Ax Bu+=

y Cx Du+=

G s
N s

D s
-----------=

Ri L
di

dt
----- vC+ + u0 t=

i
di

dt
----- vC+ + u0 t=

di

dt
----- i vC– u0 t+–=
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We let

and

Then,

and

Thus, the state equations are

and in matrix form, 

(5.126)

b. The  circuit is

Figure 5.10. Transformed circuit for Example 5.13

By the voltage division expression,

or

x1 iL i= =

x2 vC vout= =

x·1
di

dt
-----=

x·2

dvc

dt
-------- x1= =

x·1 x1 x2– u0 t+–=

x·2 x1=

y x2=

x· Ax Bu+=
x·1

x·2

1– 1–

1 0

x1

x2

1

0
u0 t+=

y Cx Du+= y 0 1
x1

x 2

0 u0 t+=

s domain–

+
R

L

+
C1

Vin s

VC s Vout s=

s

1 s

Vout s
1 s

1 s 1 s+ +
---------------------------Vin s=
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Therefore,

(5.127)

c.
A = [ 1 1; 1  0]; B = [1  0]';  C = [0  1]; D = [0];% The matrices of (5.126)
[num, den] = ss2tf(A, B, C, D, 1) % Verify coefficients of G(s) in (5.127)

num =
     0     0     1
den =

    1.0000    1.0000    1.0000

num = [0  0  1]; den = [1  1  1]; % The coefficients of G(s) in (5.127)
[A  B  C  D] = tf2ss(num, den) % Verify the matrices of (5.126)

A =
    -1    -1
     1     0
B =

     1
     0
C =

     0     1
D =

     0

Vout s

Vin s
-----------------

1

s
2

s 1+ +
----------------------=

G s
Vout s

Vin s
-----------------

1

s
2

s 1+ +
----------------------= =
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5.8 Summary

An nth-order differential equation can be resolved to  first-order simultaneous differential equa-

tions with a set of auxiliary variables called state variables. The resulting first-order differential

equations are called state space equations, or simply state equations. 

The state space equations can be obtained either from the nth-order differential equation, or

directly from the network, provided that the state variables are chosen appropriately.

When we obtain the state equations directly from given circuits, we choose the state variables to

represent inductor currents and capacitor voltages. 

The state variable method offers the advantage that it can also be used with non-linear and time-

varying devices. 

If a circuit contains only one energy-storing device, the state equations are written as

where , , , and  are scalar constants, and the initial condition, if non-zero, is denoted as

(5.128)

If and are scalar constants, the solution of  with initial condition  is

obtained from the relation

The solution of the state equations pair

where  and  are  or higher order matrices, and  and  are column vectors with two or

more rows, entails the computation of the state transition matrix , and integration of

The eigenvalues , where , of an  matrix  are the roots of the nth order

polynomial

where  is the  identity matrix.

n

x· x u+=

y k1x k2u+=

k1 k2

x0 x t0=

x· x u+= x0 x t0=

x t e
t t0–

x0 e
t

e
–

u d
t0

t

+=

x· Ax bu+=

y Cx du+=

A C 2 2 b d

e
At

x t e
A t t0–

x0 e
At

e
A–

bu d
t0

t

+=

i i 1 2 n= n n A

det A I– 0=

I n n
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Summary

We can use the MATLAB eig(x) function to find the eigenvalues of an  matrix.

The Cayley-Hamilton theorem states that a matrix can be expressed as an  degree poly-

nomial in terms of the matrix  as

where the coefficients  are functions of the eigenvalues 

If all eigenvalues of a given matrix  are distinct, that is, if , the coefficients

 are found from the simultaneous solution of the system of equations

If some or all eigenvalues of matrix  are repeated, that is, if ,

the coefficients  of the state transition matrix are found from the simultaneous solution of the

system of equations

A column vector  that satisfies the relation

n n

n 1– th

A

e
At

a0I a1A a2A
2

an 1– A
n 1–+ + + +=

ai

A 1 2 3 n

ai

a0 a1 1 a2 1

2
an 1– 1

n 1–+ + + + e
1t

=

a0 a1 2 a2 2

2
an 1– 2

n 1–+ + + + e
2t

=

a0 a1 n a2 n

2
an 1– n

n 1–+ + + + e
nt

=

A 1 2= 3= m, m 1+  ,  n=

ai

a0 a1 1 a2 1

2
an 1– 1

n 1–+ + + + e
1t

=

d

d 1

--------- a0 a1 1 a2 1

2
an 1– 1

n 1–+ + + +
d

d 1

--------e
1t

=

d
2

d 1

2
-------- a0 a1 1 a2 1

2
an 1– 1

n 1–+ + + +
d

2

d 1

2
--------e

1t
=

d
m 1–

d 1

m 1–
--------------- a0 a1 1 a2 1

2
an 1– 1

n 1–+ + + +
d

m 1–

d 1

m 1–
---------------e

1t
=

a0 a1 m 1+ a2 m 1+
2

an 1– m 1+
n 1–+ + + + e

m 1+ t
=

a0 a1 n a2 n

2
an 1– n

n 1–+ + + + e
nt

=

X

AX X=
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where  is an  matrix and  is a scalar number is called an eigenvector.

(5.129)

There is a different eigenvector for each eigenvalue.

Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to unit

length. This is done by dividing each component of the eigenvector by the square root of the sum

of the squares of their components, so that the sum of the squares of their components is equal to

unity.

Two vectors and  are said to be orthogonal if their inner (dot) product is zero. 

A set of eigenvectors constitutes an orthonormal basis if the set is normalized (expressed as unit

eigenvectors) and these vector are mutually orthogonal.

The state transition matrix can be computed from the Inverse Laplace transform using the rela-

tion

If  is the Laplace transform of the input  and  is the Laplace transform of the out-

put , the transfer function can be computed using the relation

MATLAB provides two very useful functions to convert state space (state equations), to transfer

function (s-domain), and vice versa. The function ss2tf (state space to transfer function) converts

the state space equations to the transfer function equivalent, and the function tf2ss, converts the

transfer function to state-space equations.

A n n

det A I– 0=

X Y

e
At L 1–

sI A– 1–=

U s u t Y s

y t

G s
Y s

U s
----------- C sI A– 1–

b d+= =
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5.9 Exercises

1. Express the integrodifferential equation below as a matrix of state equations where

 are constants.

2. Express the matrix of the state equations below as a single differential equation, and let

.

3. For the circuit of Figure 5.11, all initial conditions are zero, and  is any input. Write state

equations in matrix form.

Figure 5.11. Circuit for Exercise 3

4. In the circuit of Figure 5.12, all initial conditions are zero. Write state equations in matrix form.

Figure 5.12. Circuit for Exercise 4

5. In the circuit of Figure 5.13, . Use the state variable method to find  for .

Figure 5.13. Circuit for Exercise 5

k1 k2  and k3

dv
2

dt
2

-------- k3

dv

dt
------ k2v k1 v td

0

t

+ + + 3tsin 3tcos+=

x y y t=

x·1

x·2

x·3

x·4

0 1 0 0

0 0 1 0

0 0 0 1

1– 2– 3– 4–

x1

x2

x3

x4

0

0

0

1

u t+=

u t

R

L+
C

u t

R

+
C1

1 1 H

2 F 2 F

C2

Vp tu0 tcos

L

iL 0 2 A= iL t t 0

R

L+

10u0 t

2

2 H
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6. Compute the eigenvalues of the matrices , , and  below.

Hint: One of the eigenvalues of matrix C is .

7. Compute  given that

Observe that this is the same matrix as  of Exercise 6.

8. Find the solution of the matrix state equation  given that

9. In the circuit of Figure 5.14, , and .

a. Write state equations in matrix form.

b. Compute  using the Inverse Laplace transform method.

c. Find  and  for .

Figure 5.14. Circuit for Exercice 9

A B C

A
1 2

3 1–
= B

a 0

a– b
= C

0 1 0

0 0 1

6– 11– 6–

=

1–

e
At

A

0 1 0

0 0 1

6– 11– 6–

=

C

x· Ax bu+=

A 1 0

2– 2
=    b 1

2
=    x0

1–

0
= u t= t0 0=

iL 0 0= vC 0 1 V=

e
At

iL t vC t t 0

R L
C

3 4 4 3 F

4 H
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5.10 Solutions to Exercises

1. Differentiating the given integrodifferential equation with respect to  we get

or

  (1)

We let

Then, 

and by substitution into (1)

and thus the state equations are

and in matrix form

2.

Expansion of the given matrix yields

            

 Letting  we get

t

dv
3

dt
3

-------- k3

dv
2

dt
2

-------- k2

dv

dt
------ k1v+ + + 3 3t 3 3tsin–cos 3 3t 3tsin–cos= =

dv
3

dt
3

-------- k3

dv
2

dt
2

--------–= k2–
dv

dt
------ k1– v 3 3t 3tsin–cos+

v x1= dv

dt
------ x2 x1

·
= = dv

2

dt
2

-------- x3 x2

·
= =

dv
3

dt
3

-------- x3

·
=

x3

·
k1x1– k2x2– k3x3– 3 3t 3tsin–cos+=

x1

·
x2=

x2

·
x3=

x3

·
k1x1– k2x2– k3x3– 3 3t 3tsin–cos+=

x1

·

x2

·

x3

·

0 1 0

0 0 1

k1– k2– k– 3

x1

x2

x3

0

0

1

3 3t 3tsin–cos+=

x1

·
x2= x2

·
x3= x3

·
x2= x4

·
x– 1 2x2– 3x3– 4x4– u t+=

x y=

dy
4

dt
4

-------- 4
dy

3

dt
3

-------- 3
dy

2

dt
2

-------- 2
dy

dt
------ y+ + ++ u t=



Chapter 5  State Variables and State Equations

5-42 Signals and Systems with MATLAB Applications, Second Edition

Orchard Publications

3.

We let  and . By KCL,  or

or

Also,

Then,

 and 

and in matrix form

4.

We let , , and . By KCL

 or 

or

  (1)

By KVL

R

L+

Cu t

iC

iT
iL

vC
+

iL x1= vC x2= iT iL iC+=

u t vC–

R
--------------------- iL C

dvC

dt
---------+=

u t x2–

R
-------------------- x1 Cx2

·
+=

x2 Lx1

·
=

x1

· 1

L
---x2= x2

· 1

C
----x1–

1

RC
--------x2–

1

RC
--------u t+=

x1

·

x2

·
0 1 L

1– C 1– RC

x1

x2

0

1 RC
u t+=

R

+

C1

1 1 H

2 F 2 FC2Vp tcos

L

+ +

iL

vC2vC1

vC1

iL x1= vC1 x2= vC2 x3=

vC1 Vp tcos–

1
----------------------------------- 2

dvC1

dt
----------- iL+ + 0= x2 Vp tcos– 2x2

·
x1+ + 0=

x2

· 1

2
---x1–

1

2
---x2–

1

2
---Vp tcos+=
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Solutions to Exercises

 or  or   (2)

Also,

 or  or   (3)

Combining (1), (2), and (3) into matrix form we get

5.

From (5.21) of Example 5.4

For this exercise  and . Then,

and denoting the current  as the output  we get

6.

a.

vC1 L
diL

dt
------- vC2+= x2 1x1

·
x3+= x1

·
x2 x3–=

iL C
dvC2

dt
-----------= x1 2x3

·
= x3

· 1

2
---x1=

x1

·

x2

·

x3

·

0 1 1–

1– 2 1– 2 0

1 2 0 0

x1

x2

x3

0

1 2

0

Vp tcos+=

R

L+

10u0 t

2

2 H

x·
R

L
---x– 1

L
---vS u0 t+=

R– L 1–= = b 10 1 L 5= =

x t e
t t0–

x0 e
t

e
–

u d
t0

t

+=

e
1– t 0–

2 e
t–

e 5u0 d
0

t

+ 2e
t–

5e
t–

e d
0

t

+==

2e
t–

5e
t–

e
t

1–+ 2e
t–

5 5– e
t–+ 5 3e

t–– u0 t= ==

iL y

y t x t 5 3e
t–– u0 t= =

A
1 2

3 1–
= det A I– det

1 2

3 1–

1 0

0 1
– det

1 – 2

3 1– –
0= = =

1 – 1– – 6– 0=
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and thus

b.

and thus

c.

and it is given that . Then,

and thus

7.

a. Matrix  is the same as Matrix C in Exercise 6. Then,

and since  is a  matrix the state transition matrix is

  (1)

Then,

1– – 2
6–+ + 0=

2
7=

1 7= 2 7–=

B
a 0

a– b
= det B I– det

a 0

a– b

1 0

0 1
– det

a – 0

a– b –
0= = =

a – b – 0=

1 a= 2 b=

C

0 1 0

0 0 1

6– 11– 6–

= det C I– det

0 1 0

0 0 1

6– 11– 6–

1 0 0

0 1 0

0 0 1

–=

det

– 1 0

0 – 1

6– 11– 6––

0==

2
6– – 6– 11– –– 3

6
2

11 6+ + + 0= =

1 1–=

3
6

2
11 6+ + +
1+

----------------------------------------------
2

5 6+ + 1+ 2+ 3+ 0= =

1 1–= 2 2–= 1 3–=

A

1 1–= 2 2–= 1 3–=

A 3 3

e
At

a0I a1A a2A
2+ +=
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Solutions to Exercises

syms t; A=[1  1  1; 1  2  4; 1 3  9];...
a=sym('[exp( t); exp( 2*t); exp( 3*t)]'); x=A\a; fprintf(' \n');...
disp('a0 = '); disp(x(1)); disp('a1 = '); disp(x(2)); disp('a2 = '); disp(x(3))

a0 = 
3*exp(-t)-3*exp(-2*t)+exp(-3*t)

a1 = 
5/2*exp(-t)-4*exp(-2*t)+3/2*exp(-3*t)

a2 = 
1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)

Thus, 

Now, we compute  of (1) with the following MATLAB code:

syms t; a0=3*exp( t) 3*exp( 2*t)+exp( 3*t); a1=5/2*exp( t) 4*exp( 2*t)+3/2*exp(
3*t);...

a2=1/2*exp( t) exp( 2*t)+1/2*exp( 3*t); A=[0 1 0; 0 0 1; 6 11 6]; fprintf(' \n');...
eAt=a0*eye(3)+a1*A+a2*A^2

eAt =

[   3*exp(-t)-3*exp(-2*t)+exp(-3*t),   5/2*exp(-t)-4*exp(-2*t)+3/2*exp(-3*t),     1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)]
[-3*exp(-t)+6*exp(-2*t)-3*exp(-3*t),  -5/2*exp(-t)+8*exp(-2*t)-9/2*exp(-3*t),  -1/2*exp(-t)+2*exp(-2*t)-3/2*exp(-3*t)]
[3*exp(-t)-12*exp(-2*t)+9*exp(-3*t), 5/2*exp(-t)-16*exp(-2*t)+27/2*exp(-3*t),   1/2*exp(-t)-4*exp(-2*t)+9/2*exp(-3*t)]

Then,

8.

a0 a1 1 a2 1

2+ + e
1t

= a0 a1– a2+ e
t–=

a0 a1 2 a2 2

2+ + e
2t

= a0 2a1– 4a2+ e
2t–=

a0 a1 3 a2 3

2+ + e
3t

= a0 3a1– 9a2+ e
3t–=

a0 3e
t–

3e
2t–– 3e

3t–+=

a1 2.5e
t–

4e
2t–– 1.5e

3t–+=

a2 0.5e
t–

e
2t–– 0.5e

3t–+=

e
At

e
At

3e
t–

3e
2t–– e

3t–+ 2.5e
t–

4e
2t–– 1.5e

3t–+ 0.5e
t–

e
2t–– 0.5e

3t–+

3– e
t–

6e
2t–

3e
3t––+ 2.5– e

t–
8e

2t–
4.5e

3t––+ 0.5– e
t–

2e
2t–

1.5e
3t––+

3e
t–

12e
2t–– 9e

3t–+ 2.5e
t–

16e
2t–– 13.5e

3t–+ 0.5e
t–

4e
2t–– 4.5e

3t–+

=

A
1 0

2– 2
=    b

1

2
=    x0

1–

0
= u t= t0 0=
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  (1)

We use the following MATLAB code to find the eigenvalues  and 

A=[1  0; 2  2]; lambda=eig(A); fprintf(' \n');...
fprintf('lambda1 = %4.2f  \t',lambda(1)); fprintf('lambda2 = %4.2f  \t',lambda(2))

lambda1 = 2.00  lambda2 = 1.00

Next,

Then,

and

By substitution into (1) we get

and thus

9.

We let . Then,

x t e
A t 0–

x0 e
At

e
A–

bu d
0

t

+ e
At

x0 e
At

e
A–

b d
0

t

+= =

e
At

x0 e
At

b+ e
At

x0 b+ e
At 1–

0

1

2
+ e

At 0

2
== ==

1 2

a0 a1 1+ e
1t

= a0 a1+ e
t=

a0 a1 2+ e
2t

= a0 2a1+ e
2t=

a0 2e
t

e
2t–= a1 e

2t
e

t–=

e
At

a0I a1A+ 2e
t

e
2t– 1 0

0 1
e

2t
e

t– 1 0

2– 2
+= =

2e
t

e
2t– 0

0 2e
t

e
2t–

e
2t

e
t– 0

2e– 2t
2e

t+ 2e
2t

2e
t–

+ e
t

0

2e
t

2e
2t– e

2t
==

x t e
At 0

2

e
t

0

2e
t

2e
2t– e

2t

0

2

0

2e
2t

= = =

x1 0= x2 2e
2t=

R L

C

3 4 4 3 F4 H

iLiR
iC+

vC 0 1 V=

iL 0 0=

x1 iL= x2 vC=
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Solutions to Exercises

a.

or

  (1)

Also,

or

  (2)

From (1) and (2)

and thus

b.

iR iL iC+ + 0=

vC

R
----- iL C

vC

dt
-----+ + 0=

x2

3 4
--------- x1

4

3
---x2

·
+ + 0=

x2

· 3

4
---– x1 x2–=

vL vC L
diL

dt
------- 4x1

·
x2= = = =

x1

· 1

4
---x

2
=

x1

·

x2

·

0 1 4

3– 4 1–

x1

x2

=

A
0 1 4

3– 4 1–
=

e
At L 1–

sI A– 1–=

sI A– s 0

0 s

0 1 4

3– 4 1–
– s 1– 4

3 4 s 1+
= =

det sI A– det
s 1– 4

3 4 s 1+
s

2
s 3 16+ += s 1 4+ s 3 4+= = =

adj sI A– adj
s 1– 4

3 4 s 1+

s 1+ 1 4

3– 4 s
= =
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We use MATLAB to find  with the code below.

syms s t

Fs1=(s+1)/(s^2+s+3/16); Fs2=(1/4)/(s^2+s+3/16); Fs3=(-3/4)/(s^2+s+3/16); Fs4=s/

(s^2+s+3/16);...

fprintf(' \n'); disp('a11 = '); disp(simple(ilaplace(Fs1))); disp('a12 = '); disp(simple(ilaplace(Fs2)));...

disp('a21 = '); disp(simple(ilaplace(Fs3))); disp('a22 = '); disp(simple(ilaplace(Fs4)))

a11 = 
-1/2*exp(-3/4*t)+3/2*exp(-1/4*t)

a12 = 
1/2*exp(-1/4*t)-1/2*exp(-3/4*t)

a21 = 
-3/2*exp(-1/4*t)+3/2*exp(-3/4*t)

a22 = 
3/2*exp(-3/4*t)-1/2*exp(-1/4*t)

Thus,

c.

and thus for 

sI A– 1– 1
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